Advertisement

Non-β-Lactam Antibiotics

  • T. Anke
  • G. Erkel
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

Fungi have been used by mankind ever since ancient times for a variety of uses, mainly for food (Zadrazil and Karma 1997) or food production (Wolf 1997). The great diversity of substrates and habitats which fungi can successfully colonize reflects the enormous richness of genetic and metabolic resources of these organisms. Until now, fungi have only been surpassed by Actinomycetales as a source for biologically active metabolites. Among the best known are the β-lactams (penicillins and cephalosporins) which are dealt with in Chapter 4 of this Volume. In the following, we wish to review some classes of fungal metabolites which are presently used as medicinal, veterinary or agricultural antibiotics, as well as some newer candidates for development. For pharmacologically active fungal metabolites used as, e.g., immunomodulators or plant growth regulators, the reader is referred to Anke (1997).

Keywords

Antimicrob Agent Minimal Inhibitory Concentration Neurospora Crassa Fusidic Acid Tinea Capitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Y, al-Karadaghi S, LA Svensson LA, Liljas A (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus therrnophilus. EMBO J 13: 3669–3677Google Scholar
  2. Anke T (ed) (1997) Fungal biotechnology. Chapman and Hall. LondonGoogle Scholar
  3. Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30: 806–810Google Scholar
  4. Anke T, Hecht HJ, Schramm G. Steglich W (1979) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel ( Agaricales ). J Antibiot 32: 1112–1117Google Scholar
  5. Anke T, Besl H, Mocek U, Steglich W (1983) Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species ( Agaricales ). J Antibiot 36: 661–666Google Scholar
  6. Anke T, Schramm G, Schwalge B, Steffan B, Steglich W (1984) Antibiotika aus Basidiomyceten, XX. Synthese von Strobilurin A und Revision der Stereochemie der natürlichen Strobilurine. Liebigs Ann Chem 1984: 1616–1625Google Scholar
  7. Anke T, Schramm G, Steglich W, von Jagow G (1988) Structure-activity relationships of natural and synhetic Eß-mcthoxyacrylates of the strobilurin and oudemansin series. In: Kleinkauf H, von Döhren H, Jaenicke L (eds) The roots of modern biochemistry. De Gruyter, Berlin, p 657Google Scholar
  8. Anke T, Werle A, Bross M, Steglich W (1990) Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal E-ß-methoxyacrylate from Oudemansiella radicata ( Relhan ex Fr.) Sing. J Antibiot 43: 1010–1011Google Scholar
  9. Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993) BU-4794F, a new beta-1,3-glucan synthase inhibitor. J Antibiot 46: 952–960Google Scholar
  10. Arigoni D (1962) La struttura di un terpene di nuovo genere. In Gazz Chim Itl 92: 884–901Google Scholar
  11. Arigoni D. von Daehne W, Godfredsen WO, Melera A, Vangedal S (1964) The stereochemistry of fusidic acid. Experentia 20: 344–347Google Scholar
  12. Aviles P, Aliouat EM, Martinez A, Dei-Cas E, Herreros E, Dujardin L, Gargallo-Viola D (2000) In vitro pharmacodynamic parameters of sordarin derivatives in comparison with those of marketed compounds against Pneumocystis carinii isolated from rats. Antimicrob Agents Chemother 44: 1284–1290Google Scholar
  13. Baguley BC, Römmele G, Gruner J, Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem 97: 345–351Google Scholar
  14. Bäuerle J, Anke T (1980) Antibiotics from the genus Mycena and Hydropus scabripes. Planta Med 39: 195–196Google Scholar
  15. Bechter R, Schmid BP (1987) Teratogenicity in vitro–a comparative study of four antimycotic drugs using the whole embryo culture system. Toxicol In Vitro 1: 11–15Google Scholar
  16. Becker WF von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bci segment of the respiratory chain with an E-ß-methoxyacrylate system as a common structural element. FEBS Lett 132: 329–333Google Scholar
  17. Bendtzen K, Diamant M, Faber V (1990) Fusidic acid, an immunosuppressive drug with similar functions to cyclosporin A. Cytokine 2: 423–429Google Scholar
  18. Benz F, Knüsel F, Nüesch, Trichler, Nyfeler R, KellerSchierlein W (1974) Stoffwechselprodukte von Mikroorganismen. 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid-Antibiotikum aus Aspergillus nidulans var. echinulatus: Isolierung and Bausteine. Helv Chim Acta 57: 2459–2477Google Scholar
  19. Birch AJ, Cameron DW, Holzapfel CW., Rickards RW (1963) The diterpenoid nature of pleuromutilin. Chem Ind (Lond) 374–375Google Scholar
  20. Birch AJ, Holzapfel CW, Rickards RW (1966) The structure and some aspects of the biosynthesis of pleuromutilin. Tetrahedron (Suppl) 8 Part II: 359–387Google Scholar
  21. Bodley JW, Lin L, Salas M et al (1970) Translocation V. Fusidic acid stabilization of a eukaryotic ribosome-translocation factor-GDP complex. FEBS 11: 153–156Google Scholar
  22. Bossi A, Baumann M, Gerecke M, Kyburz E (1960) Syntheseversuche in der Griseofulvinreihe. I. Mitt. Eine Totalsynthese von Griseofulvin. Hely Chim Acta 43: 2071Google Scholar
  23. Brady A, Lock EA (1992) Inhibition of ferrochelatase and accumulation of porphyrins in mouse hepatocyte cultures exposed to porphyrinogenic chemicals. Arch Toxicol 66: 175–181Google Scholar
  24. Brandt E, Knauseder F, Schmid E, Thym H (1968) Water-soluble antibiotics. Austrian Patent 261,804; Chem Abstr 69,76,054 rGoogle Scholar
  25. Brian PW, Curtis PJ, Hemming HG (1946) A substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii Zal. I. Biological assay, production and isolation of “curling factor”. Trans Br Mycol Soc 29: 173–187Google Scholar
  26. Brian PW, Curtis Pi, Hemming HG (1949) A substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii Zal. III. Identity of curling factor with griseofulvin. Trans Br Mycol Soc 32: 30–33Google Scholar
  27. Brian PW (1951) Antibiotics produced by fungi. Bot Rev 17: 357–430Google Scholar
  28. Broadbent D (1966) Antibiotics produced by fungi. Bot Rev 32: 219–242Google Scholar
  29. Buchanan MS, Steglich W, Anke T (1999) Strobilurin N and two metabolites of chorismic acid from the fruit-bodies of Mycena crocata ( Agaricales ). Z Naturforsch 54c: 463–468Google Scholar
  30. Burton HS, Abraham EP (1951) Isolation of antibiotics from a species of Cephalosporium. Cephalosporin PI, P2, P3, P4 and P5. Biochem J 50: 168–174Google Scholar
  31. Butters JA, Kendall SJ, Wheeler IE, Hollomon DW (1995) Tubulins: lessons from existing products that can be applied to target new antifungals. In: Dixon GK, Non-ß-Lactam Antibiotics 105Google Scholar
  32. Copping LG, Hollomon DW (eds) Antifungal agents, discovery and mode of action. Bios Scientific Publishers, Oxford, pp 131–142Google Scholar
  33. Capa L. Mendoza A, Lavandera JL, de las Heras GF, Garcia-Bustos JF (1998) Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42: 2694–2699Google Scholar
  34. Chain E, Florey HW, Jennings MA, Williams TI (1943) Helvolic acid, an antibiotic produced by Aspergillus fumigatus, mut. helvola Yuill. Br J Exp Pathol 24: 108–119Google Scholar
  35. Chiba H, Kaneto R, Agematu H, Shibamoto N. Yoshioka T, Nishida H, Okamoto R (1993) Mer-WF3010, a new member of the papulacandin family. Il. Structure determination. J Antibiot 46: 356–358Google Scholar
  36. Clemons KV, Stevens DA (2000) Efficacies of sordarin derivatives GM193663, GM211676, and GM237354 in a murine model of systemic eoccidioidomycosis. Antimicrob Agents Chemother 44: 1874–1877Google Scholar
  37. Conolly JD. Hill RA, Ngadjui BT (1994a) Triterpenoids. Nat Product Rep 11: 91–117Google Scholar
  38. Conolly JD, Hill RA, Ngadjui BT (1994b) Triterpenoids. Nat Product Rep 11: 467–492Google Scholar
  39. Cooper A, Hodgin DC (1968) The crystal structure and absolute configuration of fusidic acid methyl ester 3p-brombenzoate. Tetrahedron 24: 909–922Google Scholar
  40. Coval SJ, Puar MS, Phife DW, Teraciano JS, Patel M (1995) SCH57404 an antifungal agent possessing the rare sordaricin skeleton and a tricyclic sugar moiety. J Antibiot 48: 1171–1172Google Scholar
  41. Current WL, Tang J, Boylan C, Watson P, Zeckner D, Turner W, Rodriguez M, Dixon C, Ma D, Radding JA (1995) Glucan biosynthesis as a target for antifungals: the echinocandin class of antifungals. In: Dixon GK, Copping LG, Hollomon DW (eds) Antifungal agents, discovery and mode of action. Bios Scientific Publishers, Oxford, pp 143–160Google Scholar
  42. Curry PT, Reed RN. Martino RM, Kitchin RM (1984) Induction of sister chromatid exchanges in vivo by the mycotoxins sterigmatocystin and griseofulvin. Mutat Res 137: 111–115Google Scholar
  43. Czworkowski J, Wang J. Steitz TA, Moore PB (1994) The crystal structure of elongation factor G complcxed with GDP, at 2.7A resolution. EMBO J 13: 3661–3668Google Scholar
  44. Daferner M, Anke T, Hellwig V, Steglich W. Sterner O (1998) Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51: 816–822Google Scholar
  45. Daferner M, Mensch S, Anke T, Sterner 0 (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch 54c: 474–480Google Scholar
  46. Daubcn WG, Kessel CR, Kishi Met al (1982) A formal total synthesis of fusidic acid. J Am Chem Soc 104: 303–305Google Scholar
  47. Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Mocrobiol 48: 471–497Google Scholar
  48. Dominguez JM, Gomez-Lorenzo MG, Martin JJ (1999) Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 274: 22423–22427Google Scholar
  49. Drews J, Georgopoulos A, Laber G, Schlitze E. Unger J (1975) Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob. Agents Chemother 7: 507–516Google Scholar
  50. Egger H, Reinshagen H (1976a) New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis. J Antibiot 29: 915–922Google Scholar
  51. Egger H, Reinshagen H (1976b) New pleuromutilin derivatives with enhanced antimicrobial activity. II. Structure-activity correlations. J Antibiot 29: 923–927Google Scholar
  52. Engler M, Anke T, Klostermeyer D, Steglich W (1995) Hydroxystrobilurin A, a new antifungal E-ß-methoxyacrylate from a Pterula species. J Antibiot 48: 884–885Google Scholar
  53. Engler M. Anke T, Sterner 0 (1998) Production of antibiotics by Collybia nivalis, Omphalotus oleariu,s, a Favolaschia and a Pterula species on natural substrates. Z Naturforsch 53c: 318–324Google Scholar
  54. Florey HW, Chain E, Heattley NG, Jennings MA, Sanders AG, Abraham EP, Florey ME (1949) Antibiotics. Oxford Univ Press, LondonGoogle Scholar
  55. Fredenhagen A, Hug P, Peter HH (1990b) Strobilurins F, G and H. three new antifungal metabolites from Bolinea lutea: II. Structure determination - fungicide strobilurin-E -G and -H production. J Antibiot 43: 661–667Google Scholar
  56. Fredenhagen A, Kuhn A, Peter HH, Cuomo V, Giulano U (1990a) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea: 1. Fermentation, isolation and biological activity - strobilurin-F, -G and -H, cytostatic antibiotics with fungicide activity. J Antibiot 43: 655–660Google Scholar
  57. Fromtling RA, Abruzzo GK (1989) L-671,329, a new anti-fungal agent. III. In vitro activity, toxicity and efficacy in comparison to aculeacin. J Antibiot 42: 174–178Google Scholar
  58. Fujimura M, Kamakura T, Inoue H, Inoue S. Yamaguchi I (1992) Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: effect of amino acid substitutions at position 198 in beta-tubulin. Pestic Biochem Physiol 44: 165–173Google Scholar
  59. Gams W (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes). Fischer-Verlag, StuttgartGoogle Scholar
  60. Gerth K, Irschik H, Reichenbach H, Trowitzsch W (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, physicochemical and biological properties. J Antibiot 33: 1474–1479Google Scholar
  61. Godtfredsen WO, Vengedal S (1962) The structure of fusidic acid. Tetrahedron 18: 1029–1048Google Scholar
  62. Godtfredsen WO, Jahnsen S, Lorck H et al. (1962) Fusidic acid. A new antibiotic. Nature 193, 987Google Scholar
  63. Godtfredsen WO, Lorck H. Jahnsen S (1964) Canadian Patent no 930, 786Google Scholar
  64. Godfredsen WO, von Daehne W, Vangedal S, Arigoni D et al (1965) The stereochemistry of fusidic acid. Tetrahedron 21: 3505–3530Google Scholar
  65. Godfredsen WO, Rastrup-Andersen N, Vangedal S, Ollis WD (1979) Metabolites of Fusidium coccineum. Tetrahedron 35: 2419–2431Google Scholar
  66. Gomez-Lorenzo MG, Garcia-Bustos JF (1998) Ribosomal P-protein stalk function is targeted by sordarin. J Biol Chem 273: 25041–25044Google Scholar
  67. Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty, K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J (2000) Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 19: 2710–2718Google Scholar
  68. Graybill JR, Najvar L, Fothergill A, Bocanegra R, de las Heras FG (1999) Activities of sordarins in murine histoplasmosis. Antimicrob Agents Chemother 43: 17162–1718Google Scholar
  69. Grove FK (1964) Griseofulvin and some analogues. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol 22. Springer, Vienna New York, pp 201–264Google Scholar
  70. Grove JF’, McGowan JC (1947) Identitiy of griseofulvin and “curling factor”. Nature 160: 574Google Scholar
  71. Grove JF, MacMillian J, Mulholland TPC, Rogers MAT (1952) Griseofulvin, part IV: structure. J Chem Soc (Lond) 3977Google Scholar
  72. Gupta RS (1984) Griseofulvin resistance mutation of Chinese hamster ovary cells that affect the apparent molecular weight of a 200,000-dalton protein. Mol Cell Biol 4: 1761–1768Google Scholar
  73. Haller B, Loeffler W (1969) Stoffwechselprodukte von Mikroorganismen. 71. Mitteilung. Fusidinsäure aus Dermatophyten and anderen Pilzen. Arch Mikrobiol 65: 181–194Google Scholar
  74. Hauser D, Sigg HP (1971) Isolierung and Abbau von Sordarin. Helv Chim Acta 54: 1187–1190Google Scholar
  75. Hawser S, Borgonovi M, Markus A, Isert D (1999) Mulundocandin, an echinocandin-like lipopeptide antifungal agent: biological activities in vitro. J Antibiot 52: 305–310Google Scholar
  76. Hellwig V, Dasenbrock J, Klostermeyer D, Kroiß S, Sindlinger T, Spiteller P, Steffan B, Steglich W, EnglerLohr M, Semar S, Anke T (1999) New benzodioxepin type strobilurins from basidiomycetes. Structural revision and determination of the absolute configuration of strobilurin D and related ß-methoxyacylate antibiotics. Tetrahedron 55: 10101–10118Google Scholar
  77. Herbert RB (1989) The biosynthesis of secondary metabolites. Chapman and Hall, LondonGoogle Scholar
  78. Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42: 2863–2869Google Scholar
  79. Hervey AH (1947) A survey of 500 basidiomycetes for antibacterial activity. Bull Torrey Bot Club 74: 476–503Google Scholar
  80. Hikino H, Asada Y; Arihara S et al (1972) Fungal metabolites.[1. Fusidic acid, a steroidal antibiotic from Isaria kogane. Chem Pharm Bull 20: 1067–1069Google Scholar
  81. Högenauer G (1979) Tiamulin and pleuromutilin. In: Hahn FE (ed) Antibiotics, vol 1. Springer, Berlin Heidelberg New York, pp 340–360Google Scholar
  82. Huber FM (1975) Griseofulvin. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol 3, pp 606–613Google Scholar
  83. Iwamoto T, Fujie A, Sakamoto K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899 A, B and C, novel antifungal lipopeptides. I. Fermentation, isolation and physicochemical properties. J Antibiot 47: 1084–1091Google Scholar
  84. Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899 A, B and C, novel antifungal lipopeptides. II. Biological properties. J Antibiot 47: 1092–1097Google Scholar
  85. Iwasaki S. Sair MI, Igarashi H, Okuda S (1970) Revised structure of helvolic acid. Chem Commun 1119–1120Google Scholar
  86. Johanson U, Hughes D (1994) Fusidic acid-resistant mutations define three regions in elongation factor G of Salmonella typhimurium. Gene 143: 55–59Google Scholar
  87. Justice CJ, Hsu M, Tse B, Ku T, Baljovec J, Schmatz D. Nielsen J (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273: 3148–3151Google Scholar
  88. Kaise H, Munaka K, Sassa T (1972) Structure of viridominic acid C, a new steroidal metabolite of a fungus having chlorosis-inducing activity. Tetrahedron Lett 3: 199–202Google Scholar
  89. Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993) Mer-WF3010, a new member of the papulacandin family. 1. Fermentation, isolation and characterization. J Antibiot 46: 247–250Google Scholar
  90. Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from basidiomycetes. VIII, Pleurotus mutilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci USA 37: 570–574Google Scholar
  91. Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976) Struktur des CyclopeptidAntibiotikums SL7801 (= Echinocandin B). Tetrahedron Lett 17: 4147–4150Google Scholar
  92. Kennedy TC, Webb G, Cannell RJP, Kinsman OS, Middleton RF, Sidebottom PJ, Taylor NL, Dawson MJ, Buss AD (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. Isolation, characterisation and biological properties. J Antibiot 51: 1012–1018Google Scholar
  93. Kerridge D (1986) Mode of action of clinically important antifungal drugs. Adv Microbial Physiol 27: 1–72Google Scholar
  94. Kingston DG, Chen PN, Vercellotti JR (1976) Metabolites of Aspergillus versicolor:6,8-di-O-methylniduruf n, griseofulvin, dechlorogriseofulvin, and 3,8-dihydroxy6-methoxy-l-methylxanthone. Phytochemistry 15: 1037–1039Google Scholar
  95. Kinsman OS, Chalk PA, Jackson HC. Middleton RF, Shuttleworth A, Rudd BAM, Jones CA, Noble HM, Wildman HG, Dawson MJ, Stylli C, Sidebottom PJ, Lamont B, Lynn S, Hayes MV (1998) Isolation and characterisation of an antifungal antibiotic (GR135402) with protein synthesis inhibition. J Antibiot 51: 41–49Google Scholar
  96. Knauseder F, Brandt E (1976) Pleuromutilins: fermentation, structure and biosynthesis. J Antibiot 29: 125–131Google Scholar
  97. Ko B-S, Oritani T, Yamashita K (1990) Synthesis and biological activities of griseofulvin analogs. Agric Biol Chem 54: 2199–2204Google Scholar
  98. Komori T, Itoh Y (1985) Chaetiacandin, a novel papulacandin. II. Structure determination. J Antibiot 38: 544–546Google Scholar
  99. Komori T, Yamashita M, Tsurumi Y, Kohsaka M (1985) Chaetiacandin, a novel papulacandin. I. Fermentation, isolation and characterization. J Antibiot 38: 455459Google Scholar
  100. Kraiczy P, Haase U, Gencic S Flindt S, Anke T, Brandt U, von Jagow G (1996) The molecular basis for the natural resistance of the cytochrome bc, complex from strobilurin-producing basidiomycetes to center Op inhibitors. Eur J Biochem 235: 54–63Google Scholar
  101. Lane MP, Nakashima TT, Vederas JC (1982) Biosynthetic source of oxygens in griseofulvin. Spin-echo resolution of oxygen-18 isotope shifts in carbon-13 NMR spectroscopy. J Am Chem Soc 104: 913–915Google Scholar
  102. Langholz E, Brynskov J, Bendtzen K et al (1992) Treatment of Crohn’s decease with fusidic acid: an antibiotic with immunosuppressive properties similar to cyclosporin. Aliment Pharmacol Ther 6: 495–502Google Scholar
  103. Levin DH, Kyner D, Acs G (1973) Protein initiation in eukaryotes. Formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNAf, and guanosine triphosphate. Proc Natl Acad Sci USA 70: 41–45Google Scholar
  104. MacMillian J (1959) Griseofulvin, part XIV. Some alcoholic reactions and the absolute configuration of griseofulvin. J Chem Soc (Lond) 1823Google Scholar
  105. Mizoguchi J, Saito T, Mizuno K, Hayano K (1977) On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot 30: 308–313Google Scholar
  106. Mizuno K, Yagi A, Satoi S, Takada M, Hayashi M (1977) Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot 30: 297–302Google Scholar
  107. Mukhopadhyay T, Roy K, Bhat RG, Sawant SN, Blumbach J, Ganguli BN, Fehlhaber HW (1992) Deoxymulundocandin — a new echnocandin type antifungal antibiotic. J Antibiot 45: 618–623Google Scholar
  108. Musilek V, Cerna J, Sasek V, Semerzieva M, Vondracek M (1969) Antifungal antibiotic from the basidiomycete Oudemansiella mucida. I. Isolation and cultivation of a producing strain. Folia Microbiol 14: 377–388Google Scholar
  109. Nicholas GM, Blunt JW, Cole All, Munro MHG (1997) Investigation of the New Zealand basidiomycete Favolaschia calocera: revision of the structures of 9methoxystrobilurins K and L, strobilurin D, and hydroxystrobilurin D. Tetrahedron Lett 38: 7465–7468Google Scholar
  110. Nicot J (1968) Sur L’identité de l’organisme producteur de l’acide fusidique, antibiotique antistaphylococcique. CR Acad Sci 267: 290–292Google Scholar
  111. Nierhaus KH, Wittman HG (1980) Ribosomal function and its inhibition by antibiotics in prokaryotes. Naturwissenschaften 67: 234–250Google Scholar
  112. Ogita T, Hayashi A, Sato S, Furutani W, Sankyo KK (1987) Antibiotic zopfimarin. Japan Patent 62–40292Google Scholar
  113. Oh K, Matsuoka H, Teraoka T, Sumita O. Takatori K, Kurata H (1993) Effects of antimycotics on the biosynthesis of cellular macromolecules in Aspergillus niger protoplasts. Mycopathologia 122: 135–141Google Scholar
  114. Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S, Shimokawa H, Sugiyama E. Kondo H, Kojiri K, Suda H (1998) BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. J Antibiot 51: 1081–1086Google Scholar
  115. Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S. Shimokawa H2Okuda S, Sato T, Hattori T et al (1968) Isolation of 3b-hydroxy-4b-hydroxymethylfusida-17(20)[16,21-cis],24-diene. Tetrahedron Lett 9: 4769–4772Google Scholar
  116. Oxford AE, Raistrick H, Simonart P (1939) Studies on the biochemistry of microorganisms. 60. Griseofulvin, a metabolic product of Penicillium griseofulvura Dierckx. Biochem J 33: 240–248Google Scholar
  117. Oxley P (1966) Cephalosporin Pl and helvolic acid. Chem Commun 729–730Google Scholar
  118. Perez P, Garcia-Atha f, Duran A (1983) Effect of papulacandin B on the cell wall and growth of Geotrichum lattis. J Gen Microbiol 129: 245–250Google Scholar
  119. Perry MJ, Hendricks-Gittins A, Stacey LM et al. (1983) Fusidane antibiotics produced by dermatophytes. J Antibiot 36: 1659–1663Google Scholar
  120. Petraitiene R, Petraitis V, Groll AH, Candelario M, Sein T, Bell A, Lyman CA, McMillian CL, Bacher J, Walsh TJ (1999) Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother 43: 2148–2155Google Scholar
  121. Pfaller MA, Marco F, Messer SA, Jones RN (1998) In vitro activity of two echinocandin derivatives, I,Y303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn Microbiol Infect Dis 30: 25 1255Google Scholar
  122. Pirrung MC, Brown WL, Rege S. Laughton P (1991) Total synthesis of (+)-griseofulvin. J Am Chem Soc 113: 8561–8562Google Scholar
  123. Richter D, Lin L. Bodley JW (1971) Translocation. IX. Pattern of action of antibiotic translocation inhibitors in eukaryotic and prokaryotic systems. Arch Biochem Biophys 147: 186–191Google Scholar
  124. Riedl K (1976) Studies on pleuromutilin and some of its derivatives. J Antibiot 29: 132–139Google Scholar
  125. Roy K, Mukhopadhyay T, Reddy GCS, Desikan KR, Ganguli BN (1987) Mulundocandin — a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation, and characterization. J Antibiot 40: 275–280Google Scholar
  126. SanMillian MJ, Vazquez D, Modolell J (1975) Interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid ribosome complex. Eur J Biochem 57: 431–440Google Scholar
  127. Satoi S, Yagi A, Asano K, Mizuno K, Watanabe T (1977) Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D,E, F and G. J Antibiot (Tokyo) 30 (4): 303–307Google Scholar
  128. Sauter H, Steglich W, Anke T (1999) Strobilurine: Evolution einer neuen Wirkstoffklasse. Angew Chem 111:1416–1438, Int Ed 39: 1328–1349Google Scholar
  129. Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL,Wilson KE, Turner MJ (1990) Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proc Natl Acad Sci USA 87: 5950–5954Google Scholar
  130. Schmatz DM, Powles M, McFadden DC, Pittarelli LA, Liberator PA, Anderson JW (1991) Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3beta-glucan synthesis inhibitor L-671,329. J Protozool 38: 151S - 153SGoogle Scholar
  131. Schneider G, Anke H and Sterner 0 (1995), Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Lett 7: 309–316Google Scholar
  132. Scholer HJ, Polak A (1984) Resistance to systemic anti-fungal agents. In: Bryan LE (ed) Antimicrobial drug resistance, Chap 14, Academic Press, San Diego, pp 393–460Google Scholar
  133. Schramm G (1980) Neue Antibiotika aus Höheren Pilzen (Basidiomyceten). PhD Thesis, Univ BonnGoogle Scholar
  134. Schramm G, Steglich W, Anke T, Oberwinkler F (1978) Antibiotika aus Basidiomyceten, III. Strobilurin A and B. antifungische Stoffwechselprodukte aus Strobilurus tenacellus. Chem Ber 111: 2779–2784Google Scholar
  135. Schwalge B (1986) Strobilurin A als Modellverbindung für synthetische Analoga. PhD Thesis, Univ BonnGoogle Scholar
  136. Schwartz RE, Giacobbe RA, Bland JA, Monaghan RL (1989) L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42: 163–167Google Scholar
  137. Selitrennikoff CP (1995) Antifungal drugs: (l,3)ß-glucan synthase inhibitors. Springer, Berlin Heidelberg New YorkGoogle Scholar
  138. Simon B (1994) Antivirale and cytotoxische Wirkstoffe aus Basidiomyceten PhD Thesis, Univ KaiserslauternGoogle Scholar
  139. Sloboda RD, Van Blaricom G, Creasy WA, Rosenbaum JL, Malawista SE (1982) Griseofulvin: association with tubulin and inhibition of in vitro microtubule assembly. Biochem Biophys Res Commun 105: 882888Google Scholar
  140. Spahn, CMT, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74: 423–439Google Scholar
  141. Stewart KR (1986) A method for generating protoplasts from Clitopilus pinsitus. J Antibiot 39: 1486–1487Google Scholar
  142. Stringer S, Stringer J, Blase M, Walzer P, Cushion M (1989) Pneumocystis carinii sequence from ribosomal RNA implies a close relationship to fungi. Exp Parasitol 68: 450–461Google Scholar
  143. Taft CS, Zugel M, Selitrennikoff CP (1991) In vitro inhibition of stable 1,3-beta-D-glucan synthase activity from Neurospora crassa. Enzym Inhib 5: 41–49Google Scholar
  144. Taha KF, Chu CK (1991) Isolation of the antibiotic griseofulvin from the fungus Nematospora coryli. J Drug Res 20: 137–141Google Scholar
  145. Tanaka N (1975) Fusidic acid. In: Cocoran JW, Hahn FE (eds) Antibiotics, vol 3. Springer, Berlin Heidelberg New York, pp 436–447Google Scholar
  146. Tomozane H, Takeuchi Y, Chosi T et al (1990) Syntheses and antifungal activities of dl-griseofulvin and its congeners. Chem Pharm Bull 38: 925–929Google Scholar
  147. Traber R, Keller-Juslen C, Loosli HR, Kuhn M, von Wartburg A (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C and D. Heiv Chim Acta 62: 1252–1259Google Scholar
  148. Traxler P, Gruner J, Auden JAL (1977a) Papulacandins, a new family of antibiotics with antifungal activity. I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot 30: 289–296Google Scholar
  149. Traxler P, Fritz H, Richter WJ (19776) Zur Struktur von Papulacandin B, einem neuen antifungischen Antibiotikum. He1v Chim Acta 60: 578–584Google Scholar
  150. Traxler P, Fritz H, Fuhrer H, Richter WJ (1980) Papulacandins, a new family of antibiotics with antifungal activity. Structures of papulacandins A, B, C and D. J Antibiot 33: 967–978Google Scholar
  151. Trowitzsch W, Reifenstahl G, Wray V, Gerth K (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). II. Structure elucidation. J Antibiot 33: 1480–1490Google Scholar
  152. Tubaki K (1954) Studies on Japanese hyphomycetes. I. Coprophilous group. Nagaoa Mycol J Nagao Inst 4: 7–8Google Scholar
  153. Vandcrhaege H, van Dijk P, de Somer P (1965) Identitiy of ramycin with fusidic acid. Nature 205: 710–711Google Scholar
  154. van Dijk PJ, de Somer P (1958) Ramycin. A new antibiotic. J Gen Mirobiol 18: 377–381Google Scholar
  155. VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991) L-687,781, a new member of the papulacandin family of beta1,3-D-glucan synthesis inhibitors. I. Fermentation, isolation, and biological activity. J Antibiot 44: 4551Google Scholar
  156. Verbist L (1990) The antimicrobial activity of fusidic acid. J Antimicrob Chemother 25 (Suppl B): 1–5Google Scholar
  157. Von Jagow G, Gribble GW,Trumpower BL (1986) Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bct complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry 25: 775–780Google Scholar
  158. von Daehne W, Godfredsen WO, Rasmussen PR (1979) Structure-activity relationship in fusidic acid-type antibiotics. Adv Appl Microbiol 25: 95–146Google Scholar
  159. von Daehne W, Jahnsen S, Kirk I et al (1984) Fusidic acid: properties, biosynthesis, and fermenation. Drugs Pharm Sci 22: 427–449Google Scholar
  160. Vondracek M, Capkova J, Slechta J, Benda A, Musilek V, Cudlin J (1970) Czech Pat 136495 (filed 26.9.1969/ obtained 15.5. 1970 ). Isolierung eines neuen antifungischen Antibiotikums. Bezug: Czech 136492Google Scholar
  161. Vondracek M, Vondrackova J, Sedmera P, Musilek V (1983) Another antibiotic from the basidiomycete Oudemansiella mucida. Coll Czech Chem Commun 48: 1508–1512Google Scholar
  162. Weber W, Anke T, Steffan B, Steglich W (1990a) Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifungal E-ß-methoxyacrylate antibiotic from Crepidotusfulvotontentosus Peck. J Antibiot 43: 207–212Google Scholar
  163. Weber W, Anke T, Bross M, Steglich W (1990b) Antibiotics from basidiomycetes, vol XXXIV. In: Strobilurin D, Strobilurin F (eds) Two new cytostatic and antifungal (E)-ß-methoxyacrylate antibiotics from Cyphellopsis anomala ( Pers ex Fr)Sing. Planta Med 56: 446–450Google Scholar
  164. Wichmann CF, Liesch JM, Schwartz RE (1989) L-671,329, a new antifungal agent. II. Structure determination. J Antibiot 42: 168–173Google Scholar
  165. Wilson BJ (1971) Miscellaneous Penicillium toxins. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins, vol 6. Fungal toxins. Academic Press, San Diego, pp 489–506Google Scholar
  166. Wolf G (1997) Traditional fermented food. In: Anke T (ed) Fungal biotechnology, Chapman and Hall. London, pp 14–25Google Scholar
  167. Wood KA, Kau DA, Wrigley SK, Beneyto R, Renno DV, Ainsworth AM, Penn J, Hill D, Killacky J, Depledge P (1996) Novel ß-methoxyacrylates of the 9-methoxystrobilurin and oudemansin classes produced by the basidiomyccte Favolaschia pustulosa. J Nat Prod 59: 646–649Google Scholar
  168. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bel complex from bovine heart mitochondria. Science 277: 60–66Google Scholar
  169. Zadrazil F, Kamra DN (1997) Edible mushrooms. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, London, pp 14–25Google Scholar
  170. Zambias RA, Hammond ML, Heck J V, Bartizal K, Trainor C, Abruzzo G, Schmatz DM, Nollstadt KM (1992) Preparation and structure-activity relationships of simplified analogues of the antifungal agent cilofungin: a total synthesis approach. J Med Chem 35: 2843–2855Google Scholar
  171. Zapf S, Anke T, Dasenbrock H, Steglich W (1993) Anti-fungal metabolites from Agaricus sp. 89139. Bioengineering 1: 92Google Scholar
  172. Zapf S, Werle A, Anke T, Klostermeyer D. Steffan B and Steglich W (1995) 9-MethoxystrobilurineBindeglieder zwischen Strobilurinen und Oudemansinen. Angew Chem 107: 255–257Google Scholar
  173. Zhanel GG, Karlowsky JA, Harding GA, Balko TV, Zelenitsky SA. Friesen M, Kabani A, Turik M, Hoban DJ (1997) In vitro activity of a new semisynthetic echinocandin, LY-303366, against systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis,and Aspergillus species. Antimicrob Agents Chemother 41:863–865Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • T. Anke
    • 1
  • G. Erkel
    • 1
  1. 1.Institut für Biotechnologie und Wirkstoff-Forschung e. V. (IBWF)KaiserslauternGermany

Personalised recommendations