• Melvin S. Fuller
Part of the The Mycota book series (MYCOTA, volume 7A)


The Hyphochytriomycota are a small group of zoospore-producing organisms that, although they live like fungi, i.e., they are nonphotosynthetic organisms that usually possess cell walls during their growth phases and acquire nutrients by absorption, are more closely allied with algal groups. The diagnostic feature of the group is the presence of a single, mastigoneme-bearing flagellum that most often is at the anterior end of the zoospore as it swims. The Hyphochytriomycota have been classified with the Protista (Whittaker 1969) and Protoctists (Margulis et al. 1990), but more recent molecular data place them in a clade with the Oomycetes and heterokont algae. This clade has been called Kingdom Cromista (Cavalier-Smith 1993, and Chap. 1, this Vol., and Kingdom Stramenopila (Alexopoulos et al. 1996); others simply refer to the group as stramenopiles (Leipe et al. 1994). Molecular studies (Van der Auwera et al. 1995) of ribosomal RNA sequences of Hyphochytrium catenoides and inverted repeat sequences of mitochondrial DNA in H. catenoides (Mc Nabb et al. 1988) indicate that the Hyphochytriomycota are close relatives of the Oomycota (see Dick, Chap. 2, this Vol.). Our own molecular studies (S. Lee and M.S. Fuller, unpubl.) of the group support inclusion of the Hyphochytriomycota in a clade with the Oomycota and heterokont algae, but suggest that the Hyphochytriomycota are more closely related to some groups of the heterokont algae than to the Oomycota.


Flagellar Apparatus Sexual Process Zoosporic Fungus Osmiophilic Body Recent Molecular Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. 4`h edn. John Wiley, New YorkGoogle Scholar
  2. Artemtchuk NV (1972) The fungi of the White Sea. III. New phycomycetes, discovered in the Great Salma Strait of the Kandalakshial Bay. Veröff Inst Meeres-forsch Bremerhaven 13: 231–237Google Scholar
  3. Artemchuk NV, Zelezinskaya LM (1969) The sea fungus Hyphochytrium peniliae n. sp. affecting planktonic crawfish Penilia avirostris ( Dana ). Mikol Fitopathol 3: 356–358Google Scholar
  4. Ayers WA, Lumsden RD (1977) Mycoparsitism of oospores of Pythium and Aphanomyces species by Hyphochytrium catenoides. Can J Microbiol 23: 38–44CrossRefGoogle Scholar
  5. Barr DJS (1970) Hyphochytrium catenoides: a morphological and physiological study of North American isolates. Mycologia 62:492–503Google Scholar
  6. Barr DJS (1986) Allochytridium expandens rediscovered: morphology, physiology and zoospore ultrastructure. Mycologia 78:439–448Google Scholar
  7. Barr DJS, Allan PME (1985) A comparison of the flagellar apparatus in Phytophthora, Saprolegnia, Thraustochytrium, and Rhizidiomyces. Can J Bot 63: 138–154CrossRefGoogle Scholar
  8. Barstow WE, Freshour GD, Fuller MS (1989) The ultra-structure of mitosis during zoosporogenesis in Rhizidiomyces apophysatus. Can J Bot 67: 3401–3409CrossRefGoogle Scholar
  9. Canter HM (1950) Studies on British chytrids IX. Anisolpidium stigeoclonii (de Wildeman) n. comb. Trans Br Mycol Soc 33: 335–344CrossRefGoogle Scholar
  10. Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol. Rev 57: 953–994PubMedGoogle Scholar
  11. Clay RP, Benhamou N, Fuller MS (1991) Ultrastructural detection of polysaccharides in the cell walls of two members of the Hyphochytriales. Mycol Res 95: 1057–1064CrossRefGoogle Scholar
  12. Coker WC (1923) The Saprolegniaceae with notes on other water molds. University of North Carolina Press, Chapel HillCrossRefGoogle Scholar
  13. Cooney EW, Barr DJS, Barstow WE (1985) The ultra-structure of the zoospore of Hyphochytrium catenoides. Can J Bot 63: 497–505CrossRefGoogle Scholar
  14. Dawe VH, Kuhn CW (1983a) Pathogenesis of infection of virus-like particles in the aquatic fungus Rhizidiomyces. Virology 130: 10–20PubMedCrossRefGoogle Scholar
  15. Dawe VH, Kuhn CW (1983b) Isolation and characteriza- tion of a double-stranded DNA mycovirus infecting the aquatic fungus Rhizidiomyces. Virology 130: 21–28PubMedCrossRefGoogle Scholar
  16. Dick MW (1983) Validation of the class name Hyphochy- triomycetes. In: Buczacki ST (ed) Zoosporic plant pathogens — a modern perspective. Academic Press, London, p 285Google Scholar
  17. Fisch C (1884) Beiträge zur Kenntniss der Chytridiaceen. Sitzungsber Phys-Med Soc Erlangen 16: 29–72Google Scholar
  18. Fuller MS (1960) Chitin and cellulose in the cell walls of Rhizidiomyces sp. Am J Bot 47: 105–109CrossRefGoogle Scholar
  19. Fuller MS (1962) Growth and development of the water mold Rhizidiomyces in pure culture. Am J Bot 49: 64–71CrossRefGoogle Scholar
  20. Fuller MS (1966) Structure of the uniflagellate zoospores of aquatic phycomycetes. In: Madelin MF (ed) The fungus spore, Colston Papers 18. Butterworths, LondonGoogle Scholar
  21. Fuller MS (1990) Phylum Hyphochytriomycota. In: Margulis L, Corlis JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 380–387Google Scholar
  22. Fuller MS (1996) The flagellated fungal spore. In: Sutton BC (ed) A century of mycology. Cambridge University Press, CambridgeGoogle Scholar
  23. Fuller MS, Barshad I (1960) Biochemical and microchemical study of the cell walls of Rhizidiomyces sp. Am J Bot 47: 838–842CrossRefGoogle Scholar
  24. Fuller MS, Jaworski A (1987) Zoosporic fungi in teaching and research. Palfrey Contributions in Botany, No 3. Southeastern Publishing, Athens, GeorgiaGoogle Scholar
  25. Fuller MS, Reichle R (1965) The zoospore and early development of Rhizidiomyces apophysatus. Mycologia 57: 946–961CrossRefGoogle Scholar
  26. Heath IB, Greenwood AD (1971) Ultrastructural observations on the kinetosomes, and Golgi bodies during the asexual life cycle of Saprolegnia. Z Zellforsch Mikrosk Anat 112: 371–389PubMedCrossRefGoogle Scholar
  27. Heath IB, Greenwood AD, Griffiths HB (1970) Origin of flimmer in Saprolegnia, Dictyuchus, Synura and Cryptomonas. J Cell Sei 7: 445–461Google Scholar
  28. Johnson TW Jr (1957) Resting spore development in the marine phycomycete Anisolpidium ectocarpii. Am J Bot 44: 875–878CrossRefGoogle Scholar
  29. Karting JS (1939) A new fungus with anteriorly uniciliate zoospores Hyphochytrium catenoides. Am J Bot 26: 512–519CrossRefGoogle Scholar
  30. Karling JS (1943) The life history of Anisolpidium ectocarpii gen. nov et sp. nov., and classification of other fungi with anteriorly uniflagellate zoospores. Am J Bot 30: 637–648CrossRefGoogle Scholar
  31. Karling JS (1944) Brazilian anisochytrids. Am J Bot 31: 391–397CrossRefGoogle Scholar
  32. Karling JS (1967) Some zoosporic fungi of New Zealand. IX Hyphochytridiales or Anisochytridiales. Sydowia Ann Mycol Ser II 20: 137–143Google Scholar
  33. Karling JS (1977) Chytridiomycetarum Iconographia. Lubrecht and Cramer, Monticello, New YorkGoogle Scholar
  34. Karling JS (1979) The anisochytrid genus Elina. Mycologia 71: 829–830CrossRefGoogle Scholar
  35. Karling JS (1981) Rhizidiomyces bullatus (Sparrow) comb. nov., and other anisochytrids from Venezuela. Nova Hedwigia 34:669–678Google Scholar
  36. Lange L, Olson LW (1979) The uniflagellate phycomycete zoospore. Dan Bot Ark 33: 1–95Google Scholar
  37. Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33: 369–377CrossRefGoogle Scholar
  38. LeJohn HB (1972) Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi. Nature 231: 164–168CrossRefGoogle Scholar
  39. Lovett JS, Haselby JA (1971) Molecular weights of ribosomal ribonucleic acid of fungi. Arch Mikrobiol 80: 191–204PubMedCrossRefGoogle Scholar
  40. Margulis L, Corliss JO, Melkonian M, Chapman DJ (1990) Handbook of Protoctista. Jones and Bartlett, BostonGoogle Scholar
  41. Martin RW, Miller CE (1986) Ultrastructure of mitosis in the endoparasite Olpidiopsis varians. Mycologia 78: 11–21CrossRefGoogle Scholar
  42. McNabb SA, Eros RW, Klassen GR (1988) Presence and absence of large inverted repeats in the mitochondrial DNA of Hyphochytriomycetes. Can J Bot 66: 2377–2379CrossRefGoogle Scholar
  43. Schenck NC, Nicolson TH (1977) A zoosporic fungus occurring on species of Gigaspora margarita and other vesicular arbuscular mycorrhizal fungi. Mycologia 69: 1049–1053CrossRefGoogle Scholar
  44. Siang W (1949) Are aquatic phycomycetes present in the air? Nature 164: 1010–1011PubMedCrossRefGoogle Scholar
  45. Sneh B, Humble SJ, Lockwood JL (1977) Parasitism of oospores of Phytophthora megasperma var. sojae, P. cactorum, Pythium sp., and Aphanomyces euteiches in soil by Oomycetes, Chytridiomycetes, Hyphomycetes, Actinomycetes, and bacteria. Phytopathology 67: 622–628Google Scholar
  46. Sparrow FK (1943) The aquatic Phycomycetes, exclusive of the Saprolegniaceae and Pythium. University of Michigan Press, Ann ArborGoogle Scholar
  47. Sparrow FK (1958) Interrelationships and phylogeny of aquatic phycomycetes. Mycologia 50: 797–813CrossRefGoogle Scholar
  48. Sparrow FK (1960) The aquatic Phycomycetes, 2nd edn. University of Michigan Press, Ann ArborGoogle Scholar
  49. Sparrow FK (1977a) Rhizidiomycopsis bullatus,a new zoosporic fungus. Mycologia 69:661–666Google Scholar
  50. Sparrow FK (1977b) A Rhizidiomycopsis on azygospores of Gigaspora margarita. Mycologia 69: 1053–1058CrossRefGoogle Scholar
  51. Valkanov A (1929) Protistenstudien. 5. Hyphochytrium khydrodictii — ein neuer Algenpilz. Arch Protistenkd 67: 110–121Google Scholar
  52. Van Der Auwera G, DeBaere R, Van de Peer Y, DeRijk P, Van den Broeck I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12: 671–678Google Scholar
  53. Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98: 435–446CrossRefGoogle Scholar
  54. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160PubMedCrossRefGoogle Scholar
  55. Wynn AR, Epton HAS (1979) Parasitism of oospores of Phytophthora erythroseptica in soil. Trans Br Mycol Soc 73: 255–259CrossRefGoogle Scholar
  56. Zopf W (1884) Zur Kenntniss der Phycomyceten. 1. Zur Morphologie and Biologie der Ancylisteen and Chytridiaceen. Nova Acta Kaiserliche Leopold Carolinae Dtsch Akad Naturforsch 47: 143–236Google Scholar
  57. Zopf W (1894) Ueber niedere thierische und pflanzliche Organismen, welche als Krankheitserreger in Algen, Pilzen, niederen Thieren und höheren Pflanzen auftreten. Beitr Physiol Morphoe niederer Organismen 4: 43–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Melvin S. Fuller
    • 1
    • 2
  1. 1.Department of BotanyUniversity of GeorgiaAthensUSA
  2. 2.Darling Marine CenterUniversity of MaineWalpoleUSA

Personalised recommendations