Skip to main content

Gene Regulation in Yeast

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 427 Accesses

Abstract

The regulation of gene expression is vital for all organisms and is especially required in microorganisms, so that they can adapt quickly to changing environmental conditions. This may involve adaptation to different carbon sources or the requirement to use alternative metabolic pathways to overcome a nutrient-limiting condition. Regulation is further required in both microorganisms and higher eukaryotes to realize developmental programs. These may be as simple as mating and sporulation in yeast or as involved as the development of a complex organism from a single cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abastado JP, Miller PF, Jackson BM, Hinnebusch AG (1991) Suppression of ribosomal reinitiation at upstream open reading frames in amino-acid starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11: 486–496

    PubMed  CAS  Google Scholar 

  • Astell CR, Ahlstrom-Jonasson L, Smith M, Tatchell K, Nasmyth KA, Hall BD (1981) The sequences of the DNA coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27: 15–23

    Article  PubMed  CAS  Google Scholar 

  • Belcourt MF, Farabaugh PJ (1990) Ribosomal frame shifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62: 339–352

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Sprague GF Jr (1987) Matal protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50: 681–691

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Breeden L, Abraham J, Sternglanz R, Nasmyth K (1985) Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41: 41–48

    Article  PubMed  CAS  Google Scholar 

  • Brawerman G (1990) Mechanisms of mRNA decay. TIBTECH 8: 171–174

    Article  CAS  Google Scholar 

  • Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43: 729–736

    Article  PubMed  CAS  Google Scholar 

  • Brown AJP (1989) Messenger RNA stability in yeast. Yeast 5: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988) Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol 8: 210–225

    PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Sharp PA, Guarente L (1988) Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334: 37–42

    Article  PubMed  CAS  Google Scholar 

  • Carlson M, Botstein D (1982) Two differently regulated mRNAs with different 5’ ends encode secreted and intracellular forms of invertase. Cell 28: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) A suppressor of snfl mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107: 19–32

    PubMed  CAS  Google Scholar 

  • Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Chen TA, Smith MM, Le S, Sternglanz R, Allfrey VG (1991) Nucleosome fractionation by mercury affinity chromatography. J Biol Chem 266: 6489–6498

    PubMed  CAS  Google Scholar 

  • Chodosh LA, Olesen J, Hahn S, Baldwin AS, Guarente L, Sharp PA (1988) A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG (1992) Phosphorylation of initiation factor 2a by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585–596

    Article  PubMed  CAS  Google Scholar 

  • Dolan JW, Fields S (1991) Cell-type-specific transcription in yeast. Biochim Biophys Acta 1088: 155–169

    Article  PubMed  CAS  Google Scholar 

  • Ernst JF (1988) Codon usage and gene expression. TIBTECH 6: 196–199

    Article  CAS  Google Scholar 

  • Ernst JF, Kawashima E (1988) Variations in codon usage are not correlated with heterologous gene expression in Saccharomyces cerevisiae and Escherichia coli. J Biotechnol 7: 1–10

    Article  CAS  Google Scholar 

  • Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332: 853–856

    Article  PubMed  CAS  Google Scholar 

  • Flick JS, Johnston M (1990) Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol Cell Biol 10: 4757–4769

    PubMed  CAS  Google Scholar 

  • Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206: 297–313

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1987) Regulatory proteins in yeast. Annu Rev Genet 21: 425–452

    Article  PubMed  CAS  Google Scholar 

  • Hahn S, Guarente L (1988) Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 240: 317–321

    Article  PubMed  CAS  Google Scholar 

  • Herrick D, Parker R, Jacobson A (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10: 2269–2284

    PubMed  CAS  Google Scholar 

  • Hershey JWB (1991) Translational control in mammalian cells. Annu Rev Biochem 60: 717–755

    Article  PubMed  CAS  Google Scholar 

  • Hill DE, Hope IA, Macke JP, Struhl K (1986) Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG, Mueller PP (1987) Translational control of a transcriptional activator in the regulation of amino acid biosynthesis in yeast. In: Ilan J (ed) Translational regulation of gene expression. Plenum Press London, pp 397–412

    Chapter  Google Scholar 

  • Hoekema A, Kastelein RA, Vasser M, de Boer HA (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7: 2914–2924

    PubMed  CAS  Google Scholar 

  • Hope IA, Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6: 2781–2784

    PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1987) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    Article  Google Scholar 

  • Johnston M (1987a) Genetic evidence that zinc is an essential co-factor in the DNA-binding domain of GAL4. Nature 328: 353–355

    Article  PubMed  CAS  Google Scholar 

  • Johnston M (1987b) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51: 458–476

    PubMed  CAS  Google Scholar 

  • Johnston M, Dover J (1987) Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionary conserved DNA-binding domain. Proc Natl Acad Sci USA 84: 2401–2405

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Salmeron JM Jr, Dincher SS (1987) Interaction of positive and negative regulatory proteins in the galactose-regulon of yeast. Cell 50: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Kakidani H, Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activation function of a eukaryotic regulatory protein. Science 231: 699704

    Google Scholar 

  • Keleher CA, Goutte C, Johnson AD (1988) The yeast cell type specific repressor a2 acts cooperatively with a non cell type specific protein. Cell 53: 927–936

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1984) Selection of initiation sites by eukaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucl Acids Res 12: 3873–3893

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA-binding proteins. Science 240: 17591764

    Google Scholar 

  • Laurenson P, Rine J (1992) Silencers, silencing and heritable transcriptional states. Microbiol Rev 56: 543560

    Google Scholar 

  • Levine M, Manley JL (1989) Transcriptional repression of eukaryotic promoters. Cell 59: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Linder P, Prat A (1990) Baker’s yeast, the new work horse in protein synthesis studies: analyzing eukaryotic translation initiation. BioEssays 12: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Lue NF, Chasman DI, Buchman AR, Kornberg RD (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7: 3446–3451

    PubMed  CAS  Google Scholar 

  • Ma J, Przibilla E, Hu J, Bogorad L, Ptashne M (1988) Yeast activators stimulate plant gene expression. Nature 334: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Mueller PP, Hinnebusch AG (1986) Multiple upstream AUG codons mediate translational control of GCN4. Cell 45: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1982) The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition. Cell 30: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J 9: 2891–2898

    PubMed  CAS  Google Scholar 

  • Nussinov R (1990) Sequence signals in eukaryotic upstream regions. Crit Rev Biochem Mol Biol 25: 185224

    Google Scholar 

  • Park E, Szostak JW (1990) Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol Cell Biol 10: 4932–4934

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Prezant T, Guarente L (1987) Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell 49: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Porter SD, Smith M (1986) Homeo-domain homology in yeast MATa2 is essential for repressor activity. Nature 320: 766–768

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1986) Gene regulation by proteins acting nearby or at a distance. Nature 322: 697–701

    Article  PubMed  CAS  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116: 9–22

    PubMed  CAS  Google Scholar 

  • Rose M, Albig W, Entian KD (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem 199: 511–518

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Cowe E (1991) Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7: 657–678

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JCW, McGinnis W, Carrasco AE, DeRobertis EM, Gehring WJ (1984) Fly and frog homeo domains show homologies with yeast mating type regulatory proteins. Nature 310: 70–71

    Article  PubMed  CAS  Google Scholar 

  • Siliciano PG, Tatchell K (1986) Identification of the DNA sequences controlling the expression of the MATa locus of yeast. Proc Natl Acad Sci USA 83: 2320–2324

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855864

    Google Scholar 

  • Struhl K (1987a) Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49: 295–297

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1987b) The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Cell 50: 841–846

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1989) Molecular mechanisms of transcriptional regulation in yeast. Annu Rev Biochem 58: 10511077

    Google Scholar 

  • Trumbly RJ (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Verdier J (1990) Regulatory DNA-binding proteins in yeast: an overview. Yeast 6: 271–297

    Article  PubMed  CAS  Google Scholar 

  • Vogt PK, Bos TJ, Doolittle RF (1987) Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxy-terminal region of a protein coded for by the oncogene jun. Proc Natl Acad Sci USA 84: 3316–3319

    Article  PubMed  CAS  Google Scholar 

  • Vreken P, van der Veen R, de Regt VCHF, de Maat AL, Planta RJ, Raue HA (1991) Turnover rate of yeast PGK mRNA can be changed by specific alterations in its trailer structure. Biochimie 73: 729–737

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Jackson BM, Hinnebusch AG (1989) Juxtaposition of domains homologous to protein kinases and histidyl-tRNA-synthetases in GCN2 protein suggest a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA 86: 4579–4583

    Article  PubMed  CAS  Google Scholar 

  • Williams FE, Trumbly RJ (1990) Characterization of TUPI, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10: 6500–6511

    PubMed  CAS  Google Scholar 

  • Yoon H, Donahue TF (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol Microbiol 6: 1413–1419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang-Hinrichs, C. (1995). Gene Regulation in Yeast. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics