Skip to main content

Ubiquitin-Dependent Proteolysis by the Proteasome

  • Chapter
The Molecular Biology of Schizosaccharomyces pombe
  • 439 Accesses

Abstract

Ubiquitin-dependent proteolysis via the 26S proteasome is a major mechanism for the specific regulation of protein levels within the eukaryotic cell. It has been shown to mediate the regulated destruction of a wide range of proteins including cell cycle regulators, tumour suppressors, transcription factors and misfolded or damaged proteins (Voges et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bays NW, Hampton RY (2002) Cdc48-ufdl-np14: stuck in the middle with ub. Curr Biol 12: R366–371.

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj N, Tarcsa E, Cascio P, Goldberg AL (2001) The unfolding of substrates and ubiq-uitin-independent protein degradation by proteasomes. Biochimie 83: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Biggins S, Ivanovska I, Rose MD (1996) Yeast ubiquitin-like genes are involved in duplica-tion of the microtubule organizing center. J Cell Biol 133: 1331–1346

    Article  PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Deveraux Q, van Nocker S, Mahaffey D et al. (1995) Inhibition of ubiquitin-mediated pro- teolysis by the Arabidopsis 26 S protease subunit S5a. J Biol Chem 270: 29660–29663

    Article  PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel PM (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17: 6144–6154

    Article  PubMed  CAS  Google Scholar 

  • Eytan E, Armon T, Heller H et al. (1993) Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex. J Biol Chem 268: 4668–4674

    PubMed  CAS  Google Scholar 

  • Finley D, Tanaka K, Mann C et al. (1998) Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci 23: 244–245

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Sadis S, Rubin DM et al. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcbl. J Biol Chem 273: 1970–1981

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Coux O et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615–623

    Article  PubMed  CAS  Google Scholar 

  • Gordon C, McGurk G, Dillon P et al. (1993) Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Gordon C, McGurk G, Wallace M, Hastie ND (1996) A conditional lethal mutant in the fission yeast 26S protease subunit mts3 + is defective in metaphase to anaphase transition. J Biol Chem 271: 5704–5711

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463–471

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bajorek M, Kohler A et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7: 1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Henke W, Ferrell K, Bech-Otschir D et al. (1999) Comparison of human COP9 signalsome and 26S proteasome lid. Mol Biol Rep 26: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30: 40539

    Article  Google Scholar 

  • Hofmann K, Bucher P (1996) The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 21: 172–173

    PubMed  CAS  Google Scholar 

  • Hofmann K, Falquet L (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Holz! H, Kapelari B, Kellermann J et al. (2000) The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol 150: 119–130

    Google Scholar 

  • Kapelari B, Bech-Otschir D, Hegerl R et al. (2000) Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J Mol Biol 300: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Kawakami T, Chiba T, Suzuki T et al. (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20: 4003–4012

    Article  PubMed  CAS  Google Scholar 

  • Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385: 737–740

    Article  PubMed  CAS  Google Scholar 

  • Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153: 6979

    Google Scholar 

  • Li T, Naqvi NI, Yang H, Teo TS (2000) Identification of a 26S proteasome-associated UCH in fission yeast. Biochem Biophys Res Commun 272: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Lord JM, Ceriotti A, Roberts LM (2002) ER dislocation: Cdc48p/p97 gets into the AAAct. Curr Biol 12: R182–184

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533–539

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9: 27–43

    Google Scholar 

  • Osaka F, Saeki M, Katayama S et al. (2000) Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J 19: 3475–3484

    Article  PubMed  CAS  Google Scholar 

  • Papa FR, Amerik AY, Hochstrasser M (1999) Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell 10: 741–756

    PubMed  CAS  Google Scholar 

  • Penney M, Wilkinson C, Wallace M et al. (1998) The pad1 + gene encodes a subunit of the 26 S proteasome in fission yeast. J Biol Chem 273: 23938–23945

    Article  PubMed  CAS  Google Scholar 

  • Russell SJ, Steger KA, Johnson SA (1999) Subcellular localization, stoichiometry and protein levels of 26S proteasome subunits in yeast. J Biol Chem 274: 21943–21952

    Article  PubMed  CAS  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P et al. (1998) Rad23 links DNA repair to the ubiquitin/ proteasome pathway. Nature 391: 715–718

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Gordon C, Ferrell K, Dubiel W (1996) Characteristics of 26S proteases from fission yeast mutants, which arrest in mitosis. J Mol Biol 263: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Seibert V, Prohl C, Schoultz I et al. (2002) Combinatorial diversity of fission yeast SCF ubiquitin ligases by homo-and heterooligomeric assemblies of the F-box proteins Poplp and Pop2p. BMC Biochem 3: 22

    Article  PubMed  Google Scholar 

  • Tatebe H, Yanagida M (2000) Cut8, essential for anaphase, controls localization of 26S proteasome, facilitating destruction of cyclin and Cut2. Curr Biol 10: 1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Ochotorena I, Kominami K (1999) Two distinct ubiquitin-proteolysis pathways in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 354: 1551–1557

    Article  PubMed  CAS  Google Scholar 

  • van Nocker S, Sadis S, Rubin DM et al. (1996) The multiubiquitin-chain-binding protein Mcbl is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16: 6020–6028

    PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Walters KJ, Kleijnen MF, Goh AM et al. (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41: 1767–1777

    Article  PubMed  CAS  Google Scholar 

  • Watkins JF, Sung P, Prakash L, Prakash S (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13: 7757–7765

    PubMed  CAS  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR, Wallace M, Seeger M et al. (1997) Mts4, a non-ATPase subunit of the 26S protease in fission yeast is essential for mitosis and interacts directly with the ATPase subunit Mts2. J Biol Chem 272: 25768–25777

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR, Wallace M, Morphew M et al. (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J 17: 6465–6476

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR, Ferrell K, Penney M et al. (2000). Analysis of a gene encoding Rpn10 of the fission yeast proteasome reveals that the polyubiquitin-binding site of this subunit is essential when Rpn12/Mts3 activity is compromized. J Biol Chem 275: 15182–15192.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR, Seeger M, Hartmann-Petersen R et al. (2001) Proteins containing the UBA domain are able to bind to multiubiquitin chains. Nat Cell Biol 3: 939–943

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Yamano H, Kitamura K, Kominami K et al. (2000) The spike of S phase cyclin Cig2 expression at the G1-S border in fission yeast requires both APC and SCF ubiquitin ligases. Mol Cell 6: 1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Young P, Deveraux Q, Beal RE et al. (1998) Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a. J Biol Chem 273: 5461–5467

    Article  PubMed  CAS  Google Scholar 

  • Zwickl P, Baumeister W (1999) AAA-ATPases at the crossroads of protein life and death. Nat Cell Biol 1: E97 - E98

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Seibert V, Geyer R et al. (2001) The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem 2: 7

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stone, M., Gordon, C. (2004). Ubiquitin-Dependent Proteolysis by the Proteasome. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics