Skip to main content

Core Promoters in S. pombe: TATA and HomolD Boxes

  • Chapter
The Molecular Biology of Schizosaccharomyces pombe

Abstract

The concept of protein-coding gene regulation at the level of transcription involves the interplay between activators and repressors, which in turn allow or prevent the DNA-dependent RNA polymerase to transcribe the structural gene. Usually activators or repressors bind as proteins to DNA sequences upstream of the coding region. This basic paradigm has been discovered in prokaryotes; as organisms evolved, however, mechanisms became increasingly complex (Huang et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Brazma A, Vilo J (2000) Gene expression data analysis. FEBS Lett 480: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Bruhn L, Munnerlyn A, Grosschedl R (1997) ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRa enhancer function. Genes Dev 11: 640–653

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Guo A, Pape L (1997) An immunoaffinity purified Schizosaccharomyces pombe TBP-containing complex directs correct initiation of the S. pombe rRNA gene promoter. Nucleic Acids Res 25: 1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Yan M, Nusinow D, Gralla JD (2002) In vitro transcription and start site selection in Schizosaccharomyces pombe. J Mol Biol 319: 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Gross T, Käufer NF (1998) Cytoplasmic ribosomal protein genes of the fission yeast Schizo-saccharomyces pombe display a unique promoter type: a suggestion for nomenclature of cytoplasmic ribosomal proteins in databases. Nucleic Acids Res 26: 3319–3322

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Huang Y, Lowe TM, Maraia (2001) Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 21: 6870–6881

    Google Scholar 

  • Huang L, Guan RJ, Pardee A (1999) Evolution of transcriptional control from prokaryotic beginnings to eukaryotic complexities. Crit Rev Eukaryot Gene Expr 9: 175–182

    Article  PubMed  Google Scholar 

  • Huang Y, Maraia RJ (2001) Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 29: 2675–2690

    Article  PubMed  CAS  Google Scholar 

  • Javerzat JP, Cranston G, Allshire R (1996) Fission yeast genes which disrupt mitotic chromosome segregation when overexpressed. Nucleic Acids Res 24: 4676–4683

    Article  PubMed  CAS  Google Scholar 

  • Keys RA, Green MR (2001) The odd coupling. Nature 413: 583–585

    Article  PubMed  CAS  Google Scholar 

  • Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20: 4754–4764

    Article  PubMed  CAS  Google Scholar 

  • Lascaris RF, Mager WH, Planta RJ (1999) DNA-binding requirements of the yeast protein Raplp as selected in silico from ribosomal protein gene promoter sequences. Bioinformatics 15: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Young RA (2002) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34: 77–137

    Article  CAS  Google Scholar 

  • Luo ML, Zhou Z, Magni K et al. (2001) Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413: 644–647

    Article  PubMed  CAS  Google Scholar 

  • Mager WH, Planta RJ, Ballesta JPG et al. (1997) A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nucleic Acids Res 25: 4872–4875

    Article  PubMed  CAS  Google Scholar 

  • Mata J, Lyne R, Burns G, Bahler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32: 143–147

    Article  PubMed  CAS  Google Scholar 

  • Planta RJ (1997) Regulation of ribosome synthesis in yeast. YEAST 13: 1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Portmann DS, O’Connor JP, Dreyfuss G (1997) YRA1, an essential Saccharomyces cerevisiae gene, encodes a novel nuclear protein with RNA-annealing activity. RNA 3: 527–537

    Google Scholar 

  • Sträßer K, Hurt E (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yralp. Nature 413: 648–652

    Article  PubMed  Google Scholar 

  • Struhl K (1995) Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29: 651–674

    Article  PubMed  CAS  Google Scholar 

  • Virbasius CMA, Wagner S, Green MR (1999) A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Mol Cell 4: 219–228

    Google Scholar 

  • Witt I, Kwart M, Groß T, Käufer NF (1995) The tandem repeat AGGGTAGGGT is, in the fission yeast, a proximal activation sequence and activates basal transcription mediated by the sequence TGTGACTG. Nucleic Acids Res 23: 4296–4302

    Article  PubMed  CAS  Google Scholar 

  • Witt I, Straub N, Käufer NF, Gross T (1993) The CAGTCACA box in the fission yeast Schizo-saccharomyces pombe functions like a TATA element and binds a novel factor. EMBO J 12: 1201–1208

    PubMed  CAS  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. TIBS 24: 437–440

    PubMed  CAS  Google Scholar 

  • Yean D, Gralla J (1997) Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol 17: 3809–3816

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witt, I., Kivinen, K., Käufer, N.F. (2004). Core Promoters in S. pombe: TATA and HomolD Boxes. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics