Bumblebees out in the Cold



IN HIS now-classic book on bumblebees of 1934, the Harvard entomologist Otto Plath (father of poet Sylvia Plath) wrote: “Like all cold-blooded animals, honeybees and bumlebees have no means of regulating their body temperature, and this exposure to cold invariably results in lethargy, and often death.” As I hope to show here, we have come a long way in understanding bumblebees (and honeybees) since Plath repeated that almost-universal assumption. To give just one example: the bumblebees’ distribution in northern or cool climates would be almost unthinkable without their phenomenal ability to regulate body temperature.


Heat Production Flight Muscle Warm Blood Thoracic Temperature Dorsal Longitudinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, H. 1954. The respiratory currents in the tracheal system of the adult honeybee. J. Exp. Biol. 31:589–593.Google Scholar
  2. Bastian, J., and H. Esch. 1970. The nervous control of the indirect flight muscles of the honeybee. Z. Vergl. Physiol. 67:307–324.CrossRefGoogle Scholar
  3. Bertsch, A. 1984. Foraging in male bumblebees (Bombus lucorum L.): Maximizing energy or minimizing water load? Oecologia (Berlin) 62:325–326.Google Scholar
  4. Boettiger, E. G. 1960. Insect flight muscle and their basic physiology. Ann. Rev. Entomol. 5:1–15.CrossRefGoogle Scholar
  5. Boettiger, E. G., and E. Furshpan. 1954. The response of fibrillar muscle to rapid release and stretch. Biol. Bull (Woods Hole) 107:305.Google Scholar
  6. Brower, L. P., J. Z. Brower, and P. W. Westcott. 1960. Experimental studies of mimicry. V. The reactions of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robber fly mimics (Mallophora bomboides), with discussion of aggressive mimicry. Am. Nat. 94:343–355.CrossRefGoogle Scholar
  7. Buttel-Reepen, H. v. 1903. Die phylogenetische Entstehung des Bienenstaates, sowie Mitteilungen zur Biologie der solitären and sozialen Apiden. Biol. Zentralbl. 23:89–108.Google Scholar
  8. Church, N. S. 1960. Heat loss and body temperature of flying insects. I. Heat loss by evaporation of water from the body. II. Heat conduction within the body and its loss by radiation and convection. J. Exp. Biol. 37:171–212.Google Scholar
  9. Clark, M. G., D. P. Bloxam, P. C. Holland, and H. A. Lardy. 1973a. Estimation of fructose diphosphatase-phosphofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochem J. 134:589–597.Google Scholar
  10. Clark, M. G., C. H. Williams, W. F. Pfeifer, D. P. Bloxam, P. C. Holland, C. A. Taylor, and H. A. Lardy. 1973. Accelerated substrate cycling of fructose-6-phosphate in the muscle of malignant hyperthermic pigs. Nature 245:99–101.PubMedCrossRefGoogle Scholar
  11. Ellington, C. P., K. E. Machin, and T. M. Casey. 1990. Oxygen consumption of bumblebees in forward flight. Nature 347:472–473.CrossRefGoogle Scholar
  12. Esch, H., and F. Goller. 1991. Neural control of honeybee fibrillar muscle during shivering and flight, J. Exp. Biol. 159:419–431.Google Scholar
  13. Esch, H., F. Goller, and B. Heinrich. 1991. How do bees shiver? Naturwissenschaften 78:325–328.CrossRefGoogle Scholar
  14. Frank, A. 1941. Eigenartige Flugbahnen bei Hummelmännchen. Z. Vergl. Physiol. 28:467–484.CrossRefGoogle Scholar
  15. Free, J. B., and C. G. Butler. 1959. Bumblebees. London: Collins.Google Scholar
  16. Gabritchevsky, E. 1926. Convergence of coloration between American pilose flies and bumblebees (Bombus). Biol. Bull (Woods Hole) 51:269–287.CrossRefGoogle Scholar
  17. Girard, M. 1869. Études sur la chaleur libre dégagée par les animaux invertebrés et spécialement les insectes. Ann. Sci. Nat. Zool. 11:135–274.Google Scholar
  18. Goller, F., and H. Esch. 1990. Comparative study of chill-coma temperatures and muscle potentials in insect flight muscles. J. Exp. Biol. 150:221–231.Google Scholar
  19. Greive, H., and B. Surholt. 1990. Dependence of fructose-bis-phosphatase from flight muscles of the bumblebees (Bombus terrestris L.) on calcium ions. Comp. Biochem. Physiol. 97B:197–200.Google Scholar
  20. Hasselrot, T. B. 1960. Studies on Swedish bumblebees (genus Bombus Latr.): Their domestication and biology. Opuscula Entomol., Suppl. 17:1–192.Google Scholar
  21. Heinrich, B. 1972a. Temperature regulation in the bumblebee, Bombus vagans: A field study. Science 175:185–187.CrossRefGoogle Scholar
  22. Heinrich, B. 1972b. Patterns of endothermy in bumblebee queens, drones and workers. J. Comp. Physiol. 77:65–79.CrossRefGoogle Scholar
  23. Heinrich, B. 1972c. Energetics of temperature regulation and foraging in a bumblebee, Bombus terricola. J. Comp. Physiol. 77:49–64.Google Scholar
  24. Heinrich, B. 1972d. Physiology of brood incubation in the bumblebee, Bombus vosnesenskii. Nature 239:223–225.CrossRefGoogle Scholar
  25. Heinrich, B. 1973. The energetics of the bumblebee. Sci. Am. 228:97–102.CrossRefGoogle Scholar
  26. Heinrich, B. 1974. Thermoregulation in bumblebees. I. Brood incubation by Bombus vosnesenskii queens. J. Comp. Physiol. 88:129–140.CrossRefGoogle Scholar
  27. Heinrich, B. 1975. Thermoregulation in bumblebees. II. Energetics of warm- up and free flight. J. Comp. Physiol. 96:155–166.Google Scholar
  28. Heinrich, B. 1976a. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 64:561–585.Google Scholar
  29. Heinrich, B. 1976b. Bumblebee foraging and the economics of sociality. Am. Sci. 64:384–395.Google Scholar
  30. Heinrich, B. 1979. Bumblebee Economics. Cambridge, Mass.: Harvard University Press.Google Scholar
  31. Heinrich, B., and M. J. E. Heinrich. 1983a. Size and caste in temperature regulation by bumblebees. Physiol. Zool. 56:552–562.Google Scholar
  32. Heinrich, B. 1983b. Heterothermia in foraging workers and drones of the bumblebee, Bambus terricola. Physiol. Zool. 56:563–567.Google Scholar
  33. Heinrich, B., and A. E. Kammer. 1973. Activation of the fibrillar muscles in the bumblebee during warm-up, stabilization of thoracic temperature and flight. J. Exp. Biol. 58:677–688.Google Scholar
  34. Heinrich, B., and C. Pantie. 1975. Thermoregulation in small flies (Syrphus sp.): Basking and shivering. J. Exp. Biol. 62:599–610.Google Scholar
  35. Heinrich, B., and D. F. Vogt. 1992. Thermoregulation by Arctic vs. temperate bumblebees: Thoracic and abdominal temperature. Unpublished manuscript.Google Scholar
  36. Heran, H. 1952. Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z. Vergl. Physiol. 34:179–206.CrossRefGoogle Scholar
  37. Himmer, A. 1925. Körpertemperaturen an Bienen und anderen Insekten. Erlanger Jahrb. Bienenkunde 3:44–115.Google Scholar
  38. Himmer, A. 1933. Die Nestwärme bei Bombus agrorum F. Biol. Zentralblatt 53:270–273.Google Scholar
  39. Hochachka, P. W., and G. N. Somero. 1973. Strategies of Biochemical Adaptation. Philadelphia, London, Toronto: W. B. Saunders.Google Scholar
  40. Hocking, B., and C. D. Sharplin. 1965. Flower basking in Arctic insects. Nature 206:215.CrossRefGoogle Scholar
  41. Ikeda, K., and E. G. Boettiger. 1965. Studies on the flight mechanism in insects. II. The innervation and electrical activity of the fibrillar muscles of the bumblebees, Bombus. J. Insect Physiol. 11:779–789.CrossRefGoogle Scholar
  42. Joos, B., P. A. Young, T. M. Casey. 1991. Wingstroke frequency of foraging bumblebees in relation to morphology and temperature. Physiol. Zool. 16:191–200.Google Scholar
  43. Kammer, A. E. 1968. Motor patterns during flight and warm-up in Lepidoptera. J. Exp. Biol. 48:89–109.Google Scholar
  44. Kammer, A. E., and B. Heinrich. 1972. Neural control of bumblebee fibrillar muscle during shivering. J. Comp. Physiol. 78:337–345.CrossRefGoogle Scholar
  45. Kammer, A. E., and B. Heinrich. 1974. Metabolic rates related to muscle activity in bumblebees. J. Exp. Biol. 61:219–227.PubMedGoogle Scholar
  46. Kammer, A. E., and B. Heinrich. 1978. Insect flight metabolism. Adv. Insect Physiol. 13:133–228.CrossRefGoogle Scholar
  47. Knee, W. J., and J. T. Medler. 1965. The seasonal size increase of bumblebee workers (Hymenoptera: Bombus). Can. Entomol. 97:1149–1155.CrossRefGoogle Scholar
  48. Krogh, A., and E. Zeuthen. 1941. Mechanisms of flight preparation in some insects. J. Exp. Biol. 18:1–10.Google Scholar
  49. Machin, K. E., and J. W. S. Pringle. 1959. The physiology of insect fibrillar muscle. II. Mechanical properties of beetle flight muscle. Proc. Roy. Soc. Lond. B151:204–225.CrossRefGoogle Scholar
  50. Marsh, R. L., and W. R. Dawson. 1988. Avian adjustments to cold. In Animal Adaptations to Cold,ed. L. Wang. New York, Heidelberg, Berlin: Springer-Verlag.Google Scholar
  51. Mulloney, B. 1970. Impulse patterns in the flight motor neurones of Bombus californicus and Oncopeltus fasciatus. J. Exp. Biol. 52:59–77.Google Scholar
  52. Newport, G. 1837. On the temperature of insects and its connexion with the functions of respiration and circulation in this class of invertebrate animals Phil. Trans. Roy. Soc. Lond. 1837:259–338.Google Scholar
  53. Newsholme, E. A., B. Crabtree, S. J. Higgins, S. D. Thornton, and C. Start. 1972. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem. J. 128:89–97.PubMedGoogle Scholar
  54. Pekkarinen, A. 1979. Morphometric, colour and enzyme variation in bumblebees (Hymenoptera, Apidae, Bombus) in Fennoscandia and Denmark. Acta Zool. Fennica 158:1–60.Google Scholar
  55. Plath, O. E. 1934. Bumblebees and Their Ways. New York: MacmillanGoogle Scholar
  56. Plowright, R. C., and R. E. Owen. 1980. The evolutionary significance of bumblebee color patterns: A mimetic interpretation. Evolution 34:622–637.CrossRefGoogle Scholar
  57. Pringle, J. W. S. 1954. The mechanism of the myogenic rhythm of certain insect fibrillar muscles. J. Physiol. 124:269–291.PubMedGoogle Scholar
  58. Prÿs-Jones, O. E. 1986. Foraging behavior and activity of substrate cycle enzymes in bumblebees. Anim. Behay. 34:609–611.CrossRefGoogle Scholar
  59. Richards, K. W. 1973. Biology of Bombus polaris Curtis and B. hyperboreus Schönherr at Lake Hazen, Northwest Territories (Hymenoptera: Bombini). Quest. Entomol. 9:115–157.Google Scholar
  60. Sladen, F. W. L. 1912. The Bumble-bee, Its Life History and How to Domesticate It. London: Macmillan.Google Scholar
  61. Snodgrass, R. E. 1956. Anatomy of the Honey Bee. Ithaca, N.Y.: Comstock.Google Scholar
  62. Stiles, E. W. 1979. Evolution of color pattern and pubescence characteristics in male bumblebees: Automimicry vs. thermoregulation. Evolution 33:941–957.CrossRefGoogle Scholar
  63. Stone, G. N., and P. G. Willmer. 1989. Warm-up rates and body temperatures in bees: The importance of body size, thermal regime and phylogeny. J. Exp. Biol. 147:303–328.Google Scholar
  64. Surholt, B., H. Greive, T. Baal, and A. Bertsch. 1990. Non-shivering thermogenesis in asynchronous flight muscles of bumblebees? Comparative studies on males of Bombus terrestris, Xylocopa sulcatipes and Acherontia atropos. Comp. Biochem. Physiol. 97A:439–499.Google Scholar
  65. Surholt, B., H. Greive, C. Hommel, and A. Bertsch. 1988. Fuel uptake, storage and use in male bumblebees Bombus terrestris L. J. Comp. Physiol. B158:263–269.Google Scholar
  66. Surholt, B., and E. A. Newsholme. 1981. Maximum activities and properties of glucose 6-phosphate in muscles from vertebrates and invertebrates. Biochem. J. 198:621–629.PubMedGoogle Scholar
  67. Surholt, B., and E. A. Newsholme. 1983. The rate of substrate cycling between glucose and glucose 6-phosphate in muscle and fat-body of the hawk moth (Acherontia atropos) at rest during flight. Biochem. J. 210:49–54.PubMedGoogle Scholar
  68. Unwin, D. M., and S. A. Corbet. 1984. Wingbeat frequency, temperature and body size in bees and flies. Physiol. Entomol. 9:115–121.CrossRefGoogle Scholar
  69. Vogt, F. D., and B. Heinrich. 1992. Thermoregulation in Arctic vs. temperate bumblebees. H. Size and insulation. Unpublished manuscript.Google Scholar
  70. Wolf, T. J., P Schmidt-Hempel; C. P. Ellington, and R. D. Stevenson. 1989. Physiological correlates of foraging efforts in honey-bees: Oxygen consumption and nectar load. Funct. Ecol. 3:417–424.CrossRefGoogle Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations