Skip to main content

Butterflies and Wings

  • Chapter
The Hot-Blooded Insects

Abstract

ON ANY walk in a hot, lowland, tropical jungle you will meet brilliant butterflies on their sojourns amongst the foliage. You will see them on mountain meadows covered with carpets of colorful flowers and on the tundra above the Arctic circle. Butterflies are found in an extraordinary range of geographical, ecological, and thermal environments, and wherever they live their activity is strongly affected by thermoregulation. In the northern hemisphere two of the more eye-catching examples are the European peacock Inachis io (Fig. 2.1) and the Holarctic mourning cloak Nymphalis antiopa. Both butterflies hibernate as adults. In Vermont and Maine the mourning cloak is already active in late March, while the ground is still covered in deep snow. It flies long before any leaf or flower buds have opened, stopping periodically to feed on sap oozing from tree wounds and to expose its dark “cloak” to the warming sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Arnold, J. W. 1964. Blood circulation in insect wings. Mem. Entomol. Soc. Can., no. 38.

    Google Scholar 

  • Ayres, M. P., and S. F. MacLean, Jr. 1987. Molt as a component of insect development: Galerucella sagittariae (Chrysomelidae) and Epirrita autumnata (Geometridae). Oikos 48:273–279.

    Article  Google Scholar 

  • Bartlett, P. N., and D. M. Gates. 1967. The energy budget of a lizard on a tree trunk. Ecology 48:315–322.

    Article  Google Scholar 

  • Birket-Smith, S. J. R. 1984. Prolegs, Legs and Wings of Insects. Entomon- ograph, vol. 5. Copenhagen: Scandinavian Science Press, Ltd.

    Google Scholar 

  • Blau, W. S. 1981. Latitudinal variation in the life histories of insects occupying disturbed habitats: A case study. In Insect Life History Patterns, ed. R. F. Denno and H. Dengle, pp. 75–95. New York, Heidelberg, Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Bogert, C. M. 1949. Thermoregulation in reptiles, a factor in evolution. Evolution 3:195–211.

    Article  PubMed  CAS  Google Scholar 

  • Bogert, C. M. 1959. How reptiles regulate their body temperature. Sci. Am. 200:105–120.

    Article  Google Scholar 

  • Brower, L. P., J. van Zandt Brower, and F. P. Cranston. 1965. Courtship behavior of the queen butterfly, Danaus plexippus berenice (Cramer). Zoologica (New York) 50:1–37.

    CAS  Google Scholar 

  • Chai, P., and R. B. Srygley. 1986. Associations of flight patterns and thermal biology of butterflies to their palatability. Am. Zool. 24:98A.

    Google Scholar 

  • Chai, P., and R. B. Srygley. 1989. Predation and the flight, morphology, and temperature of neotropical rainforest butterflies. Am. Nat. 135:748–765.

    Article  Google Scholar 

  • Clark, J. A., K. Cena, and N. J. Mills. 1973. Radiative temperatures of butterfly wings. Z. Angew. Entomol. 73:327–332.

    Article  Google Scholar 

  • Clench, H. K. 1966. Behavioral thermoregulation in butterflies. Ecology 47:1021–1034.

    Article  Google Scholar 

  • Cooper, W. 1874. A dissertation on northern butterflies. Can. Entomol. 6:9–96.

    Google Scholar 

  • Cowles, R. B., and C. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 85:261–296.

    Google Scholar 

  • Digby, P. S. B. 1955. Factors affecting the temperature excess of insects in sunshine. J. Exp. Biol. 32:279–298.

    Google Scholar 

  • Douglas, M. M. 1981. Thermoregulatory significance of thoracic lobes in the evolution of insect wings. Science 211:84–86.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, M. M., and J. W. Grula. 1978. Thermoregulatory adaptations allowing ecological range expansion by the pierid butterfly, Nathalis iole Boisduval. Evolution 32:776–783.

    Article  Google Scholar 

  • Downes, J. A. 1964. Arctic insects and their environment. Can. Entomol. 96:279–307.

    Google Scholar 

  • Downes, J. A. 1965. Adaptation of insects in the Arctic. Ann. Rev. Entomol. 10:257–274.

    Article  Google Scholar 

  • Dumont, J. P. C., and R. M. Robertson. 1986. Neural circuits: An evolutionary perspective. Science 233:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P. R., and D. Wheye. 1984. Some observations on spatial distribution in a montane population of Euphydras editha. J. Res. Lepid. 23:143–152.

    Google Scholar 

  • Findlay, R., M. R. Young, and J. A. Findlay. 1983. Orientation behaviour in the Grayling butterfly: Thermoregulation or crypsis? Ecol. Entomol. 8:145–153.

    Article  Google Scholar 

  • Flower, J. W. 1964. On the origin of flight in insects. J. Insect Physiol. 10:81–88.

    Article  Google Scholar 

  • Gibo, D. K., and M. L. Pallett. 1979. Soaring flight of monarch butterflies, Danaus plexippus (Lepidoptera:Danaidae), during the late summer migration in Southern Ontario. Can. J. Zool. 57:1393–1401.

    Article  Google Scholar 

  • Gossard, T. W., and R. E. Jones. 1977. The effects of age and weather on egg-laying in Pieris rapae L. J. Appl. Ecol. 14:65–71.

    Article  Google Scholar 

  • Gould, S. J. 1985. Not necessarily a wing. Nat. Hist. 10:13–25.

    Google Scholar 

  • Grodnitzky, D. L., and M. V. Kozlov. 1991. Evolution and function of wings and their scale covering in butterflies and moths (Insecta: Papilionida = Lepidoptera). Biol. Zent. Bl. 110:199–206.

    Google Scholar 

  • Guppy, C. S. 1986. The adaptive significance of alpine melanism in the butterfly Parnassius phoebus F. (Lepidoptera:Papilionidae). Oecologia (Berlin) 70:205–213.

    Google Scholar 

  • Heinrich, B. 1972. Thoracic temperatures of butterflies in the field near the equator. Comp. Biochem. Physiol. 43A:459–467.

    Article  Google Scholar 

  • Heinrich, B. 1977. Why have some animals evolved to regulate a high body temperature? Am. Nat. 111:623–640.

    Article  Google Scholar 

  • Heinrich, B. 1986a. Thermoregulation and flight activity of the satyr, Coenonympha inornata (Lepidoptera:Satyridae). Ecology 67:593–597.

    Article  Google Scholar 

  • Heinrich, B. 1986b. Comparative thermoregulation of four montane butterflies of different mass. Physiol. Zool. 59:616–626.

    Google Scholar 

  • Heinrich, B. 1990. Is “reflectance” basking real? J. Exp. Biol. 154:31–43.

    Google Scholar 

  • Herter, K. 1953. Der Temperatursinn der Insekten. Berlin: Dunker Er Hum-bolt.

    Google Scholar 

  • Hidaka, R. 1973. Logic of mating behavior of Lepidoptera. Ann. N.Y. Acad. Sci. 223:70–76.

    Article  PubMed  CAS  Google Scholar 

  • Hidaka, T., and K. Yamashita. 1975. Wing color pattern as a releaser of mating behavior in the swallowtail butterfly Papilio xuthus L. (Lepidoptera Papilionidae). Appl. Entomol. Zool. 10:263–267.

    Google Scholar 

  • Hoffmann, R. J. 1974. Environmental control of seasonal variation in the butterfly Colias eurytheme: Effects of photoperiod and temperature on pteridine pigmentation. J. Insect Physiol. 20:1913–1924.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, R. J. 1978. Environmental uncertainty and evolution of physiological adaptation in Colias butterflies. Am. Nat. 112:999–1015.

    Article  Google Scholar 

  • Kammer, A. E. 1968. Motor patterns during flight and warm-up in Lepidoptera. J. Exp. Biol. 48:89–109.

    Google Scholar 

  • Kammer, A. E. 1970. Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus L. Z. Vergl. Physiol. 68:334–344.

    Article  Google Scholar 

  • Kammer, A. E. 1971. Influence of acclimation temperature on the shivering behavior of the butterfly, Danaus plexippus (L.). Z. Vergl. Physiol. 72:364–369.

    Article  Google Scholar 

  • Kammer, A. E., and J. Bracchi. 1973. Role of the wings in the absorption of radiant energy by a butterfly. Comp. Biochem. Physiol. 45A:1057–1064.

    Article  Google Scholar 

  • Kevan, P. G., and J. D. Shorthouse. 1970. Behavioral thermoregulation by High Arctic butterflies. Arctic 23:268–279.

    Google Scholar 

  • Kingsolver, J. G. 1983. Thermoregulation and flight in Colias butterflies: Elevational patterns and mechanistic limitations. Ecology 64:534–545.

    Article  Google Scholar 

  • Kingsolver, J. G. 1985a. Thermal ecology of Pieris butterflies (Lepidoptera: Pieridae): A new mechanism of behavioral thermoregulation. Oecologia 66:540–545.

    Article  Google Scholar 

  • Kingsolver, J. G. 1985b. Thermoregulatory significance of wing melanization in Pieris butterflies (Lepidoptera: Pieridae): Physics, posture, and pattern. Oecologia 66:546–553.

    Article  Google Scholar 

  • Kingsolver, J. G. 1985c. Butterfly engineering. Sci. Am. 253:106–113.

    Article  Google Scholar 

  • Kingsolver, J. G. 1987. Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution 41:472–490.

    Article  Google Scholar 

  • Kingsolver, J. G. 1988. Thermoregulation, flight, and the evolution of wing pattern in pierid butterflies: The topography of adaptive landscapes. Am. Zool. 28:899–912.

    Google Scholar 

  • Kingsolver, J. G., and M. A. R. Koel. 1985. Aerodynamics, thermoregulation, and insect wings: Differential scaling and evolutionary change. Evolution 39:488–504.

    Article  Google Scholar 

  • Kingsolver, J. G., and R. M. Moffat. 1982. Thermoregulation and the determinants of heat transfer in Colias butterflies. Oecologia 53:27–33.

    Article  Google Scholar 

  • Kingsolver, J. G., and W. B. Watt. 1983. Thermoregulatory strategies in Colias butterflies: Thermal stress and the limits to adaptation in temporally varying environments. Am. Nat. 121:32–55.

    Article  Google Scholar 

  • Kingsolver, J. G., and W. B. Watt. 1984. Mechanistic constraints and optimality models: Thermoregulatory strategies in Colias butterflies. Ecology 65: 1835–1839.

    Article  Google Scholar 

  • Kingsolver, J. G., and D. C. Wiernasz. 1987. Dissecting correlated characters: Adaptive aspects of phenotypic covariation in melanization patterns of Pieris butterflies. Evolution 41:491–503.

    Article  Google Scholar 

  • Krogh, A., and E. Zeuthen. 1941. The mechanism of flight preparation in some insects. J. Exp. Biol. 18:1–10.

    Google Scholar 

  • Kukalova, J. 1968. Permian mayfly nymphs. Psyche 75:310–327.

    Google Scholar 

  • Kukalova-Peck, J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 156:53–126.

    Article  Google Scholar 

  • Kukalova-Peck, J. 1985. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Can. J. Zool. 63:933–955.

    Article  Google Scholar 

  • Kukalova-Peck, J. 1987. New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta). Can. J. Zool. 65:2327–2345.

    Article  Google Scholar 

  • Lewin, R. 1985. On the origin of wings.,Science 230:428–429.

    CAS  Google Scholar 

  • Longstaff, G. B. 1905a. Notes on the butterflies observed in a tour through India and Ceylon, 1903–4. Trans. Entomol. Soc. Lond. 1905:85, 126, 135–36.

    Google Scholar 

  • Longstaff, G. B. 1905b. The attitude of Satyrus semele at rest. Entomol. Month. Mag. 16:44–45.

    Google Scholar 

  • Longstaff, G. B. 1906. Some rest-attitudes of butterflies. Trans. Entomol. Soc. Lond. 1906:97–118.

    Google Scholar 

  • Magnus, D. 1958. Experimentelle Untersuchungen zur Bionomie und Ethologie des Kaisermantels, Argynnis paphila L. (Lep. Nymph.). Z. Tierpsychol. 15:397–426.

    Google Scholar 

  • Marden, J. 1987. Maximum lift production during takeoff in flying animals J. Exp. Biol. 130:235–258.

    Google Scholar 

  • Marden, J., and P. Chai. 1989. Effects of palatability and mimicry on butterfly design. Unpublished manuscript.

    Google Scholar 

  • Masters, A. R., S. B. Malcolm, and L. P. Brower. 1988. Monarch butterfly (Danaus plexippus) thermoregulatory behavior and adaptations for overwintering in Mexico. Ecology 69:458–467.

    Article  Google Scholar 

  • Ohsaki, N. 1986. Body temperatures and behavioral thermoregulation strategies of three Pieris butterflies in relation to solar radiation. J. Ethol. 4:1–9.

    Article  Google Scholar 

  • Packard, A. S. 1898. A Text-book of Entomology. London and New York: Macmillan

    Google Scholar 

  • Parker, G. H. 1903. The phototropism of the mourning-cloak butterfly. In Mark Anniversary Volume: To Edward Lauens Mark,pp. 453–469. New York: H. Holt Co.

    Google Scholar 

  • Pictet, A. 1915. A propos des tropismes. Recherches expérimentales sur le comportement des insectes vis-a-vis des facteurs de l’ambiance. Bull. Soc. Vaud. Sci. Nat. 50S:423–550.

    Google Scholar 

  • Pivnick, K. A., and J. N. McNeil. 1986. Sexual differences in thermoregulation of Thymelicus lineola adults (Lepidoptera: Hesperiidae). Ecology 67:1024–1035.

    Article  Google Scholar 

  • Pivnick, K. A., and J. N. McNeil. 1987. Diel patterns of activity of Thymelicus lineola adults (Lepidoptera: Hesperidae) in relation to weather. Ecol. Entomol. 12:197–207.

    Article  Google Scholar 

  • Polcyn, D. M., and M. A. Chappell. 1986. Analysis of heat transfer in Vanessa butterflies: Effects of wing position and orientation to wind and light. Physiol. Zool. 59:706–716.

    Google Scholar 

  • Radl, E. 1903. Untersuchungen über den Phototropismus der Tiere. Leipzig. (Not seen by author; quoted in Herter, 1953.)

    Google Scholar 

  • Rawlins, J. E. 1980. Thermoregulation by the black swallowtail butterfly Papilla polyxenes (Lepidoptera: Papilionidae). Ecology 61:345–357.

    Article  Google Scholar 

  • Rawling, J. E., and R. C. Lederhouse. 1978. The influence of environmental factors on roosting in the black swallowtail, Papilio polyxenes asterius Stoll (Papilionidae). J. Lepid. Soc. 32:145–159.

    Google Scholar 

  • Riek, E. F., and J. Kukalova-Peck. 1984. A new interpretation of dragonfly wing venation based upon Early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Can. J. Zool. 62:1150–1166.

    Article  Google Scholar 

  • Robertson, R. M. 1987. Interneurons in the flight system of the cricket Teleogryllus oceanicus. J. Comp. Physiol. A160:431–445.

    Article  Google Scholar 

  • Robertson, R. M., K. G. Pearson, and H. Reichert. 1982. Flight interneurons in the locust and the origin of insect wings. Science 217:177–179.

    Article  Google Scholar 

  • Roland, J. 1982. Melanism and diel activity of alpine Callas (Lepidoptera: Pieridae). Oecologia (Berlin) 53:214–221.

    Google Scholar 

  • Shapiro, A. M. 1974. Ecotypic variation in montane butterflies. Wasmann J. Biol. 43:267–280.

    Google Scholar 

  • Shapiro, A. M. 1977. Phenotypic induction in Pieris papi L.: Role of temperature and photoperiod in a coastal California population. Ecol. Entomol. 2:217–224.

    Article  Google Scholar 

  • Srygley, R. B., and P. Chai. 1989. Predation and the elevation of thoracic temperature in brightly-colored, neotropical butterflies. Am. Nat. 135:766–787.

    Article  Google Scholar 

  • Stern, V. M., and R. F. Smith. 1960. Factors affecting egg production and oviposition in populations of Colias philodice eurytheme Boisduval (Lepidoptera: Pieridae). Hilgardia 29:411–454.

    Google Scholar 

  • Stone, G. N., J. N. Amos, T. F. Stone, R. I. Knight, H. Gay, and F. Parrott. 1988. Thermal effects on activity patterns and behavioural switching in a concourse of foragers on Stachytarpheta mutabilis (Verbenaceae) in Papua New Guinea. Oecologia 77:56–63.

    Article  Google Scholar 

  • Suzuki, N., A. Niizuma, K. Yamashita, M. Watanabe, K. Nozato, A. Ishida, K. Kirstani, and S. Migai. 1985. Studies on ecology and behavior of Japanese black swallowtail butterflies. Jap. J. Ecol. 35:21–30.

    Google Scholar 

  • Tinbergen, N. 1942. The courtship of the Grayling Eumenis (= Satyros) semele L. In The Animal in Its World: Field Studies, pp. 197–248. London: Allen and Unwin.

    Google Scholar 

  • Tongue, A. E. 1909. Resting attitudes of Lepidoptera. Proc. South Lond. Entomol. Nat. Hist. Soc. 10:5–8.

    Google Scholar 

  • Tsuji, J. S. 1980. The in-flight thermal biology of Colias butterflies. Undergraduate honors thesis, Stanford University.

    Google Scholar 

  • Tsuji, J. S., J. G. Kingsolver, and W. B. Watt. 1986. Thermal physiological ecology of Colias butterflies in flight. Oecologia (Berlin) 69:161–170.

    Google Scholar 

  • Vielmetter, W. 1954. Die Temperaturregulation des Kaisermantels in der Sonnenstrahlung. Naturwissenschaften 41:535–536.

    Article  Google Scholar 

  • Vielmetter, W. 1958. Physiologie des Verhaltens zur Sonnenstrahlung bei dem Tagfalter, Argynnis paphi L. 1. Untersuchungen im Freiland. J. Insect Physiol. 2:13–37.

    Article  Google Scholar 

  • Wasserthal, L. T. 1975. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21:1921–1930.

    Article  Google Scholar 

  • Wasserthal, L. T. 1983. Haemolymph flows in the wings of pierid butterflies visualized by vital staining (Insecta, Lepidoptera). Zoomorphology 103:177–192.

    Article  Google Scholar 

  • Watt, W. B. 1968. Adaptive significance of pigment polymorphism in Callas butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution 22:437–458.

    Article  Google Scholar 

  • Watt, W. B. 1969. Adaptive significance of pigment polymorphism in Collets butterflies. II. Thermoregulation and photoperiodically controlled melanin variation in Callas eurytheme. Proc. N.A.S. 63:767–774.

    Article  CAS  Google Scholar 

  • Wickman, P. O.1985. The influence of temperature on the territorial and mate locating behavior of the small heath butterfly, Coenonympha pamphilus (L) Lepidoptera: Satyridae. Behay. Ecol. Sociobiol. 16:233–239.

    Article  Google Scholar 

  • Wigglesworth, V. B. 1976. The evolution of insect flight. In Insect Flight, ed. R. C. Rainey. Symp. R. Entomol. Soc. Lond. 7:255–269.

    Google Scholar 

  • Winn, A. F. 1916. Heliotropism in butterflies; or turning toward the sun. Can. Entomol. 48:6–9.

    Article  Google Scholar 

  • Wootton, R. J. 1981. Paleozoic insects. Ann. Rev. Entomol. 26:319–344.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Butterflies and Wings. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics