Skip to main content

Flies of All Kinds

  • Chapter
  • 325 Accesses

Abstract

THE order Diptera, the “true flies,” has been around for a long time. Some of the oldest fly fossils (from Australia) date to the Upper Triassic, about 190 million years ago, and the relatively advanced forms already existing then suggests that Diptera must have appeared much earlier than that, possibly in the Permian period, 220 million years ago (McAlpine, 1979). Dinosaurs emerged at about the same time, but they have been extinct for 65 million years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alahiotus, S. N. 1983. Heat shock proteins: A new view on temperature compensation. Comp. Biochem. Physiol. 75B:379–387.

    Google Scholar 

  • Asit, B., and C. L. Prosser. 1967. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem. Physiol. 21:449–467.

    Article  Google Scholar 

  • Bartholomew, G. A., and J. R. B. Lighton. 1986. Endothermy and energy metabolism of a giant tropical fly, Pantopthalmus tabaninus Thunberg. J. Comp. Physiol. B156:461–467.

    Google Scholar 

  • Byers, G. W. 1969. Evolution of wing reduction in crane flies (Diptera: Tipulidae). Evolution 23:346–354.

    Article  Google Scholar 

  • Byers, G. W. 1983. The crane fly genus Chionea in North America. Univ. Kansas Sci. Bull. 52:59–195.

    Google Scholar 

  • Chappell, M. A., and K. R. Morgan. 1987. Temperature regulation, endothermy, resting metabolism, and flight energetics of tachinid flies (Nowickia sp.). Physiol. Zool. 60:550–559.

    Google Scholar 

  • Clavel, J. D., and M. F. Clavel. 1969. Influence de la température sur le nombre, le pourcentage d’éclosion et la taille des oeufs fondus par Drosophila melanogaster. Ann. Soc. Entomol. Fr. 5:161–177.

    Google Scholar 

  • Connor, M. E. 1924. Suggestions for developing a campaign to control yellow fever. Am. J. Trop. Med. 4:277–307.

    Google Scholar 

  • Czajka, M., and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.

    CAS  Google Scholar 

  • Digby, P. S. B. 1955. Factors affecting the temperature excess of insects in sunshine. J. Exp. Biol. 32:279–298.

    Google Scholar 

  • Dingley, F., and J. Maynard Smith. 1968. Temperature acclimatization in the absence of protein synthesis in Drosophila subobscura. J. Insect Physiol. 14:1185–1194.

    Article  CAS  Google Scholar 

  • Downes, J. A. 1965. Adaptations of insects in the Arctic. Ann. Rev. En tam a 1. 106:257–274.

    Article  Google Scholar 

  • Edney, E. B., and R. Barrass. 1962. The body temperature of the tse-tse fly, Glossina morsitans Westwood (Diptera, Muscidae). J. Insect Physiol. 8:469–481.

    Article  Google Scholar 

  • Frison, T. H. 1935. The stoneflies, or Plecoptera, of Illinois. Bull. Ill. Nat. Hist. Survey 20:281–471.

    Google Scholar 

  • Gerday, C. 1982. Soluble calcium-binding proteins from fish and invertebrate muscle? Molecular Physiol. 2:63–87.

    CAS  Google Scholar 

  • Gilbert, F. S. 1984. Thermoregulation and structure of swarms in Syrphus ribesii (Syrphidae). Oikos 42:249–255.

    Article  Google Scholar 

  • Hâgvar, S. 1971. Field observations on the ecology of a snow insect, Chionea arancoides Dalm. (Dipt. Tipulidae). Norsk Entomol. Tidskr. 18:33–37.

    Google Scholar 

  • Haufe, W. O., and L. Burgess. 1956. Development of Aedes at Fort Churchill, Manitoba and predictions of dates of emergence. Ecology 37:500–519.

    Article  Google Scholar 

  • Heinrich, B. 1974. Thermoregulation in endothermic insects. Science 185:747–756.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B. 1988. One Man’s Owl. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Heinrich, B., and G. A. Bartholomew. 1971. An analysis of pre-flight warm-up in the sphinx moth, Manduca sexta. J. Exp. Biol. 55:223–239.

    Google Scholar 

  • Heinrich, B., and C. Pantle. 1975. Thermoregulation in small flies (Syrphus sp.): Basking and shivering. J. Exp. Biol. 62:595–610.

    Google Scholar 

  • Hochachka, P. W. 1965. Isoenzymes in metabolic adaptation of a poikilotherm: Subunit relationships in lactic dehydrogenase of goldfish. Arch. Biochem. Biophys. 111:96–103.

    Article  PubMed  CAS  Google Scholar 

  • Hocking, B., and C. D. Sharplin. 1965. Flower basking by Arctic insects. Nature 206:215.

    Article  Google Scholar 

  • Hosgood, S. M. W., and P. A. Parsons. 1968. Plymorphism in natural populations of Drosophila melanogaster for the ability to withstand temperature shocks. Experimentation (Basel) 24:727–728.

    CAS  Google Scholar 

  • Howe, M. A., and M. J. Lelane. 1986. Post-feed buzzing in the tsetse, Glossina morsitans morsitans, is an endothermic mechanism. Physiol. Entomol. 11:279–286.

    Article  Google Scholar 

  • Humphrey, W. F., and S. E. Reynolds. 1980. Sound production and endothermy in the horse bot-fly, Gasterophilus intestinalis. Physiol. Entomol. 5:235–242.

    Article  Google Scholar 

  • Jones, J. S., J. A. Coyne, and L. Partridge. 1987. Estimation of the thermal niche of Drosophila melanogaster using a temperature-sensitive mutation. Am. Nat. 130:83–90.

    Article  Google Scholar 

  • Kevan, P. G. 1972. Heliotropism in some Arctic flowers. Can. Field Nat. 86:41–44.

    Google Scholar 

  • Kevan, P. G. 1975. Sun-tracking solar furnaces in High Arctic flowers: Significance for pollination and insects. Science 189:723–726.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. T. 1988. Adaptations to temperate climates and evolution of overwintering strategies in the Drosophila melanogaster species group. Evolution 42:1288–1297.

    Article  Google Scholar 

  • Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature 30:225–227.

    Article  Google Scholar 

  • Littlewood, S. C. 1966. Temperature threshold for flight of Trichocera annulata (Meigen) (Dipt., Trichoceridae). Entomol. Mon. Mag. 102:15–18.

    Google Scholar 

  • Marden, J. H. 1989. Effects of load-lifting constraints on the mating system of a dance fly. Ecology 70:496–502.

    Article  Google Scholar 

  • May, M. L. 1976. Warming rates as a function of body size in periodic endotherms. J. Comp. Physiol. 111:55–70.

    Google Scholar 

  • Maynard Smith, J. 1957. Temperature tolerance and acclimatization in Drosophila subobscura. J. Exp. Biol. 34:85–96.

    Google Scholar 

  • Maynard Smith, J. 1963. Temperature and rate of aging in poikilotherms. Nature 199:400–402.

    Article  Google Scholar 

  • McAlpine, J. F. 1979. Diptera. In Canada and Its Insect Fauna, ed. H. V. Danks, pp. 389–424. Memoirs of the Entomological Society of Canada, 108.

    Google Scholar 

  • Meats, A. 1973. Rapid acclimation to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19:1903–1911.

    Article  Google Scholar 

  • Miyan, J. A., and A. W. Ewing. 1985. Is the “click” mechanism of Dipteran flight an artifact of CC14 anaesthesia? J. Exp. Biol. 116:313–322.

    Google Scholar 

  • Morgan, K. R., and B. Heinrich. 1987. Temperature regulation in bee-and wasp-mimicking syrphid flies. J. Exp. Biol. 133:59–71.

    Google Scholar 

  • Morgan, K. R., and T. E. Shelly. 1988. Body temperature regulation in desert robber flies (Diptera: Asilidae). Ecol. Entomol. 14:419–428.

    Article  Google Scholar 

  • Morgan, K. R., T. E. Shelly, and L. S. Kimsey. 1985. Body temperature regulation, energy metabolism, and wing loading in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B 151:561–570.

    Google Scholar 

  • Morrison, W. W., and R. Milkman 1978. Modification of heat resistance in Drosophila by selection. Nature 273:49–50.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, P. A., J. T. Giesel, and M. N. Manlove. 1983. Temperature effects on life history variation in Drosophila simulans. Evolution 37:1181–1192.

    Google Scholar 

  • O’Neill, K. M., W. P. Kemp, and K. A. Johnson. 1990. Behavioural thermoregulation in three species of robber flies (Diptera, Asilidae: Efferia). Anim. Behay. 39:181–191.

    Article  Google Scholar 

  • Parsons, P. A. 1978. Boundary conditions for Drosophila resource utilization in temperate regions, especially at low temperatures. Am. Nat. 112:1063–1074.

    Article  Google Scholar 

  • Rowe, M. 1989. The own that traded a hoot for a hiss. Nat. His. 5:3233.

    Google Scholar 

  • Rowley, W. A., and C. L. Graham. 1968. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  • Schnebel, E. M., and J. Grossfield. 1984. Mating-temperature range in Drosophila. Evolution 38:1296–1307.

    Article  Google Scholar 

  • Schneiderman, D., and C. M. Williams. 1955. An experimental analysis of the discontinuous respiration of the cecropia moth silkworm. Biol. Bull. (Woods Hole) 109:123–143.

    Article  Google Scholar 

  • Sotavalta, 0.1947. The flight-bee (wing-beat frequency) of insects. Acta Entomol. Fenn. 4:1–117.

    Google Scholar 

  • Stone, A., C. W. Sabrosky, W. W. Wirth, R. I. Foote, and J. R. Colson. 1965. A Catalogue of the Diptera of America North of Mexico. USDA Agricultural Handbook, 276.

    Google Scholar 

  • Sugg, P., J. S. Edwards, and J. Baust. 1983. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chirominidae). Ecol. Entomol. 8:105–113.

    Article  Google Scholar 

  • Thiessen, C. J., and J. A. Mutchmoor. 1967. Some effects of thermal acclimation on muscle apyrase activity and mitochondrial number of Periplaneta americana and Musca domestica. J. Insect Physiol. 13:1837–1842.

    Article  CAS  Google Scholar 

  • Vinogradskaja, O. N. 1942. Body temperature in Anopheles maculipennis Messeae Fall. Zool. Zh. 21:187–195.

    Google Scholar 

  • Willmer, P. G. 1982a. Thermoregulatory mechanisms in Sarcophaga. Oecologia (Berlin) 53:382–385.

    Google Scholar 

  • Willmer, P. G. 1982b. Hygrothermal determinants of insect activity patterns: The Diptera of water-lily leaves. Ecol. Entomol. 7:221–231.

    Article  Google Scholar 

  • Willmer, P. G., and D. M. Unwin. 1981. Field analysis of insect heat budgets: Reflectance, size and heating rates. Oecologia (Berlin) 50:250–255.

    Google Scholar 

  • Yurkiewicz, W. J. 1968. Flight range and energetics of the sheep blowfly during flight at different temperatures. J. Insect Physiol. 14:335–339.

    Article  Google Scholar 

  • Yurkiewicz, W. J., and T. Smyth, Jr. 1966a. Effect of temperature on flight speed of the sheep blowfly. J. Insect Physiol. 12:195–226.

    Article  Google Scholar 

  • Yurkiewicz, W. J., and T. Smyth, Jr. 1966b. Effects of temperature on oxygen consumption and fuel utilization by the sheep blowfly. J. Insect Physiol. 12:403–408.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Flies of All Kinds. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics