Skip to main content

Generalized Plasticity Modelling of Saturated Sand Behaviour under Earthquake Loading

  • Chapter
The finite element method in the 1990’s
  • 645 Accesses

Abstract

Modelling of soil behaviour has progressed very much during the past years. This paper addresses the problem of reproducing the response of saturated sands under dynamic loading such as caused by earthquakes, within the framework of Generalized Plasticity Theory, a Summary of which is provided in the first part of the paper.

Next, a simple model for saturated sand is presented, where the unloading process is considered as a new loading with the advantage of a better modelling of cyclic mobilization phenomena.

Anisotropy of sand may result sometimes in an overestimated dynamic strength. Last part of the paper is devoted to show how isotropic models formulated in terms of invariants may be easily generalized to account for material structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz, O. C., Chang, C. T. and Bettess, P. : “Drained, consolidating and dynamic behaviour assumptions in soils”.Geotechnique. 30 no 4, 385–395 (1980).

    Article  Google Scholar 

  2. Zienkiewicz, O. C. , Chang, C.T. and Hinton, E. “Non-linear seismic response and liquefaction”. Int.J.Num.Anal. Meth. Geomech.. 2, 381–404, (1987)

    Article  Google Scholar 

  3. Zienkiewicz, O.C., Leung, K.H., Hinton, E. and Chang, C.T. “Liquefaction and Permanent Deformation under Dynamic Conditions-Numerical Solution and Constitutive Relations”, in G. N.Pande and O.C.Zienkiewicz, Soil Mechanics. — Transient and Cyclic Loads. Ch. 5, 71–102, Wiley, 1982.

    Google Scholar 

  4. Zienkiewicz, O. C. and Shiomi, T. “Dynamic behaviour of Saturated Porous Media : The generalised Biot formulation and its numerical solution”, Int.J.Num.Anal.Meth.Geomech., 8 71–96, 1984.

    Article  MATH  Google Scholar 

  5. Zienkiewicz, O. C. and Taylor, R.L., “Coupled problems a single time — stepping procedure”, Comm. Appl.Numer.Meth 1. 233–239., (1985).

    Article  MATH  Google Scholar 

  6. Zienkiewicz, O.C., Chan, A.H.C:, Pastor, M. , Paul, D.K. and Shiomi, T. “Static and Dynamic behaviour of geomaterials rational approach to quantitative solutions. I : Fully saturated problems”. Proc. Royal Society Series A 429,285–309 (1990)

    Article  MATH  Google Scholar 

  7. Zienkiewicz, O. C. and Mroz, Z. “Generalized plasticity formulation and applications to geomechanics”. Mechanics of Engineering Materials C.S. Desai and R.H. Gallagher (Eds) Wiley 665–679 (1984)

    Google Scholar 

  8. Zienkiewicz, O.C., Leung, K.H. and Pastor, M. “A simple model for transient soil loading in earthquake analysis. I : Basic model and its application”. Int. J.Numer. Anal.Methods Geomech.. 9, 953–976 (1985)

    Article  Google Scholar 

  9. Pastor, M., Zienkiewicz, O.C. and Leung, K. H: “A simple model for transient soil loading in earthquake analysis. II : Non-associative models for sands”. Int.J. Numer. Anal. Methods Geomech. 9, 977–998 (1986)

    Google Scholar 

  10. Pastor, M., Zienkiewicz, O. C. and Chan, A.H.C. “Generalized plasticity and the modelling of soil behaviour” Int.J. Number Anal.Methods Geomech. 14 (1990)

    Google Scholar 

  11. Poorooshasb, H.B. and Pietrusczak, S. “On yielding and flow of sand : a generalized two surface model”, Computers and Geotechnics. 1, 35–38, 1985.

    Google Scholar 

  12. Pande, G.N. and Sharma, K. G. “Multi-laminate model of clays : a numerical evaluation of the influence of principal stress axes”. Int.J. Numer. Anal.Methods Geomech. 7, 397–418 (1983)

    Article  MATH  Google Scholar 

  13. Pande, G.N. and Pietrusczak, S. , “Multilaminate framework of soil models plasticity formulation”, Int.J.Number. Anal.Meth. Geomech 11, 651–658 (1987).

    Article  MATH  Google Scholar 

  14. Aubry, D., Hujeux, J.C. , Lassoudiere, F. and Meimon, Y. “A double memory model with multiple mechanisms for cyclic soil behaviour” Int.Symp. Num. Models in Geomechanics. R. Dungar, G.N. Pande and J.A. Studer (Eds) Balkema, Rotterdam(1982)

    Google Scholar 

  15. Matsuoka, H. “Stress-strain relationships of sands based on the mobilized plane”. Soils and Foundations Vol.14, N 2, pp 47–61 (1974)

    Article  Google Scholar 

  16. Darve, F. and Labanieh, S. “Incremental constitutive law for sands and clays : simulation of monotonic and cyclic tests” Int.J. Numer. Anal.Methods Geomech, 6, 243–275 (1982)

    Article  MATH  Google Scholar 

  17. Mroz, Z. “On the description of anisotropic work-hardening”. J. Mech. Phvs. Solids, 15, 163–175 (1967)

    Google Scholar 

  18. Iwan, W.D. , “On a class of models for the yielding behaviour of continuous and composite systems”, J.App.Mech. 34 : E3, 612–617

    Google Scholar 

  19. Hashiguchi, K. “Constitutive equations of elastoplastic materials with elastic plastic transition”. J.Appl.Mech.ASME. 47, 266–272 (1980)

    Article  MATH  Google Scholar 

  20. Dafalias, Y.F. and Herrmann, L.R., “Bounding Surface formulation of soil plasticity”, Soil Mechanics-Transient and Cyclic loads. ch.10, 253–283, eds. G.N.Pande and O.C.Zienkiewicz, Wiley, 1982.

    Google Scholar 

  21. Anandarajah, A. and Dafalias, F. “Bounding surface plasticity III : Application to anisotropic cohesive soils” J. Eng. Mech. ASCE. 112, 12, 1292–1318 (1986)

    Article  Google Scholar 

  22. Hirai, H. “An elastoplastic constitutive model for cyclic behaviour of sands” Int.J.Numer. Anal.Methods Geomech 11, 503–520 (1987)

    Article  MATH  Google Scholar 

  23. Ghaboussi, J. and Momen, H. “Modelling and analysis of cyclic behaviour of sands” Soil Mechanics-Transient and Cyclic Loads, pp 313–342 G.N. Pande and O.C. Zienkiewicz (Eds) Wiley (1982)

    Google Scholar 

  24. Hill, R. “The mathematical theory of plasticity“.Oxford at the Clarendon Press (1950)

    MATH  Google Scholar 

  25. Nova, R. and Sacchi, G. “A model of the stress-strain relationship of orthotropic geological media”. J. Mec. Theor. Appl. 1, 6, pp 927–949 (1982)

    Google Scholar 

  26. Baker, R. and Desai, C.S. “Induced anisotropy during plastic straining” Int.J. Numer. Anal. Methods Geomech. 8 167–185 (1983)

    Article  Google Scholar 

  27. Pastor, M. »Modelling of anisotropic sand behaviour, Computers and Geotechnics. (To appear 1991)

    Google Scholar 

  28. Chan, A.H.C. , Zienkiewicz, O.C. and Pastor, M. “Transformation of incremental plasticity relation from defining space to general cartesian stress space”.Comm. Appl. Num. Meth. 4, 577–580 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pastor, M. , Zienkiewicz, O.C.and Chan, A.H.C.”A Generalized Plasticity continuous loading model for Geomaterials”, NUMETA, 1987.

    Google Scholar 

  30. Yamada, Y. and Ishihara, K. “Undrained deformation characteristics of loose sands under three-dimensional stress conditions”, Soils & Foundations.Vol.21, n 1, 97–107 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Oñate J. Periaux A. Samuelsson

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pastor, M. (1991). Generalized Plasticity Modelling of Saturated Sand Behaviour under Earthquake Loading. In: Oñate, E., Periaux, J., Samuelsson, A. (eds) The finite element method in the 1990’s. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10326-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10326-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10328-9

  • Online ISBN: 978-3-662-10326-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics