Skip to main content

Näherungslösungen für Eigenwertprobleme

  • Chapter
Stabilitätsprobleme der Elastostatik
  • 177 Accesses

Übersicht über Abschnitt VI

Es werden die für die praktische Rechnung wichtigen Verfahren behandelt, mit deren Hilfe die Differentialgleichungen für die indifferenten Gleichgewichtszustände angenähert gelöst werden können. Zunächst werden die an die Energiemethode anknüpfenden Verfahren von Ritz und Galerkin erläutert, an die sich Betrachtungen über die Extremumseigenschaften der Eigenwerte anschließen. Es folgt eine Besprechung der vor allem für eindimensionale Probleme geeigneten Methode der schrittweisen Näherung und deren Kopplung mit dem Ritz-schen Verfahren. Einige Betrachtungen über die Eigenwerte von Systemen, die sich aus Teilsystemen mit bekannten Eigenwerten zusammensetzen, runden den Kreis der Verfahren ab, bei denen die Energiemethode eine Rolle spielt. Der Abschnitt schließt mit einer Erläuterung des übertragungsverfahrens, das u. a. beim Einsatz elektronischer Rechenautomaten von Bedeutung ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Es soll sich allerdings nur um eine Behandlung der für Stabilitätsprobleme wichtigsten Fragen handeln, wobei noch die rein mathematischen Probleme in den Hintergrund treten werden. Wegen ausführlicherer Darstellungen sei auf die mathematische Literatur verwiesen, vor allem auf L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963.

    Google Scholar 

  2. Nach F. Willers: Z. angew. Math. Mech. 21 (1941) 43.

    Article  Google Scholar 

  3. Die klassische Abhandlung von W. Ritz findet sich im J. reine angew. Math. 135 (1909) 1.

    Google Scholar 

  4. Vgl. z. B. S. Timoshenko: Schwingungsprobleme der Technik, Berlin 1932, S. 288.

    Book  Google Scholar 

  5. Es gibt natürlich auch noch andere Möglichkeiten zur Bestimmung der Freiwerte eines Ansatzes von der Form (14), auf die hier nicht näher eingegangen werden soll. Zum Beispiel kann man nach der „Kollokationsmethode” in n willkürlich wählbaren Punkten des Systems die Erfüllung der Differentialgleichung verlangen. (Vgl. L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 411.)

    Google Scholar 

  6. Diese Methode wurde schon von J. W. Rayleigh: Theory of Sound, Kap. 4, London 1877/78, angegeben. Wenn oben nur die Verwendung eines eingliederigen Ansatzes als Ray-Leighsches Verfahren bezeichnet wurde, so sollte damit weniger den historischen Tatsachen Rechnung getragen werden, als vielmehr eine zweckmäßige und vielfach übliche Bezeichnungsweise zur Unterscheidung der verschiedenen Verfahren eingeführt werden.

    Google Scholar 

  7. Vgl. z. B. R. Courant u. D. Hilbert: Methoden der mathematischen Physik, Bd. I, 3. Aufl., Berlin/Heidelberg/New York 1968, S. 179.

    Book  Google Scholar 

  8. Zur Kennzeichnung dieses Unterschiedes benutzen C.B. Biezeno u. R. Grammel: Technische Dynamik, Bd. I, 2. Aufl., Berlin/Göttingen/Heidelberg 1953, S. 144, die Bezeichnungen „geometrische” und „dynamische” Randbedingungen.

    Book  MATH  Google Scholar 

  9. In der mathematischen Literatur, siehe E. Kamke: Math. Z. 48 (1942) 67, werden außerdem noch in etwas anderem Zusammenhang die Bezeichnungen „wesentliche” und „restliche” Randbedingungen benutzt, die sich in der Anwendung auf die hier zu behandelnden Stabilitätsprobleme mit den Begriffen „geometrische” und „dynamische” Randbedingungen und damit häufig auch mit den Begriffen „künstliche” und „natürliche” Randbedingungen decken.

    Article  MathSciNet  Google Scholar 

  10. Vgl. etwa R. Courant u. D. Hilbert: Methoden der mathematischen Physik, Bd. I, 3. Aufl., Berlin/Heidelberg/New York 1968, S. 236;

    Book  Google Scholar 

  11. L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 51.

    Google Scholar 

  12. Der ausführliche Nachweis der Entwickelbarkeit findet sich bei L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 137.

    Google Scholar 

  13. Courant, R., u. D. Hilbert: Methoden der mathematischen Physik, Bd. I, 3. Aufl., Berlin/Heidelberg/New York 1968, S. 351.

    Book  Google Scholar 

  14. Trefftz, E.: Math. Arm. 100 (1928) 503.

    MathSciNet  MATH  Google Scholar 

  15. Trefftz, E. Kryloff, M. N.: Mem. Sciences Math. 49 (1931).

    Google Scholar 

  16. Bertram, G.: Z. angew. Math. Mech. 37 (1957) 191, und 39 (1959) 236.

    Article  MathSciNet  MATH  Google Scholar 

  17. Michlin, S. G.: Variationsmethoden der mathematischen Physik, Berlin 1962.

    MATH  Google Scholar 

  18. über die Einzelheiten der Rechnung vgl. H. Hartmann: Knickung — Kippung — Beulung, Wien 1937, S. 170. Die Beulbedingung findet sich auch im Anhang dieses Buches, Beulfall II, A, a, 8.

    Google Scholar 

  19. Vgl. H. Hartmann: Knickung — Kippung — Beulung, Wien 1937, S. 170.

    Google Scholar 

  20. Galerkin: Wjestnik Ingenerow Heft 19, Petrograd 1915. Ein Referat über diese in russischer Sprache erschienene Arbeit findet sich bei H. Hencky: Z. angew. Math. Mech. 7 (1927) 80.

    MATH  Google Scholar 

  21. Nach R. Courant u. D. Hilbert: Methoden der mathematischen Physik, Bd. I, 3. Aufl., Berlin/Heidelberg/New York 1968, S. 151, stammt der Grundgedanke dieser Näherung bereits von Euler (1744).

    Book  Google Scholar 

  22. Von K. Sattler: Bautechnik 30 (1953) 288 u. 326, wird es treffend als „Durchbiegungsverfahren” bezeichnet.

    Google Scholar 

  23. Vgl. hierzu K. Sattler: Fußnote 2, und R. Klement: Der Stahlbau 26 (1957) 372.

    Google Scholar 

  24. Verfahren, die auf die praktische Berechnung von Stockwerkrahmen und mehrfeldrigen Rahmen zugeschnitten sind, werden angegeben in V. Gensichen: Zur Einschränkung und genauen Berechnung der Knicklasten ebener Rahmentrag werke, Mitt. d. Inst. f. Statik d. Techn. Univ. Hannover, Nr. 21 (1974).

    Google Scholar 

  25. Leipholz, H.: Z. angew. Math. Phys. 14 (1963) 70, wo auch die Konvergenz für das folgende Beispiel allgemein bewiesen wird. Vgl. ferner M. W. Keldysch: Isw. d. Akad. d. W. d. UdSSR 1942 und Leipholz, H.: Z. angew. Math. Mech., Tagungssonderheft 1965, S. 127.

    Article  MATH  Google Scholar 

  26. Vgl. E. Abody u. A. Petür: Math. Naturw. Anzeiger d. Ungar. Akad. d. Wiss. 62 (1948).

    Google Scholar 

  27. über die graphische Lösung von Eigenwertproblemen s. L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 179. 14 Pflüger, Elastostatik, 3. Aufl.

    Google Scholar 

  28. Damit ist natürlich noch nicht gesagt, daß zwischen diesen Schranken auch der wahre Wert P K liegen muß. Im vorliegenden Fall trifft das zwar zu, es ist aber keineswegs immer der Fall. Näheres darüber, wann ein entsprechender „Einschließungssatz” gilt, siehe L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 131.

    Google Scholar 

  29. Bei graphischer Integration und Verzicht auf die Mittelbildung nach dem Ritzschen Verfahren pflegt man die Methode der schrittweisen Näherung bei Knickaufgaben auch als Vianello-Verfahren zu bezeichnen. Nach L. Vianello: Z. VDI 42 (1898) 1436.

    Google Scholar 

  30. Man kann natürlich auch daran denken, das allgemeine Ritzsche bzw. Galerkinsche Verfahren unter Benutzung eines mehrgliederigen Ansatzes mit der halben Iteration zu kombinieren. Der Ausbau dieses Gedankens führt zu dem besonders für Schwingungsuntersuchungen geeigneten Verfahren von R. Grammel: Ing.-Arch. 10 (1939) 35, das also die obige Vorschrift (85) als Spezialfall enthalten würde.

    Article  MathSciNet  Google Scholar 

  31. Vgl. Anhang, Knickfall I, A, b, 2.

    Google Scholar 

  32. Traenkle, A.: Ing.-Arch. 1 (1930) 510.

    Article  Google Scholar 

  33. Vgl. K. Hohenemser: Ing.-Arch. 1 (1930) 280. wo die entsprechende Schlußfolgerung für Schwingungen ausgesprochen ist.

    Article  Google Scholar 

  34. Vgl. L. Collatz: Eigenwertaufgaben mit technischen Anwendungen, 2. Aufl., Leipzig 1963, S. 44.

    Google Scholar 

  35. Die genaue Kurve muß übrigens immer „von unten gesehen” konkav verlaufen, wie zuerst H. Schaefer gezeigt hat. Vgl. hierzu und allgemein zu den Ausführungen der Abschnitte VI, E, 2, 3: Schaefer, H.: Beitrag zur Berechnung des kleinsten Eigenwertes eindimensionaler Eigenwertprobleme, Diss. Hannover 1934 und Z. angew. Math. Mech. 14 (1934) 367.

    Google Scholar 

  36. Strigl, G.: Der Stahlbau 24 (1955) 33 u. 51.

    Google Scholar 

  37. Börsch, W., u. Supan: Der Stahlbau 24 (1955) 62.

    MathSciNet  Google Scholar 

  38. Die Rechnung könnte auch mit dem Drehwinkelverfahren weitergeführt und insbesondere die Auflösung der entstehenden Gleichungen mit dem Verfahren von Cross durchgeführt werden. S. E. Chwalla, Der Bauingenieur 34 (1959) 128, 240, 299.

    Google Scholar 

  39. Dieses Verfahren ist wohl zuerst in der Schwingungslehre bei H. Holzer: Schiffbau 8 (1907) 823, 866, 904 zu finden, wo es allerdings noch nicht als besondere Methode gekennzeichnet ist. In die Baustatik wurde es unter dem Namen „Traversenmethode” von Stewart eingeführt.

    Google Scholar 

  40. Siehe R. Stewart u. A. Kleinlogel: Die Traversenmethode, Berlin 1952. Von S. Falk wird es in Abh. Braunschweig. Wiss. Ges. 7 (1955) 74 und in weiteren Veröffentlichungen als „Reduktionsverfahren” bezeichnet, in sehr weitreichender Form entwickelt und für zahlreiche Probleme anwendungsfähig gemacht.

    Google Scholar 

  41. Siehe auch R. Kersten: Das Reduktions-verfahren der Baustatik, Berlin/Göttingen/Heidelberg 1962.

    Book  Google Scholar 

  42. Von der übrigen recht umfangreichen Literatur sei nur der Aufsatz W. Schnell: Z. angew. Math. Mech. 35 (1955) 269,angeführt, der sich auch mit den hier behandelten Problemen beschäftigt.

    Article  MathSciNet  MATH  Google Scholar 

  43. Die Grundlagen dieses Kalküls werden hier als bekannt vorausgesetzt. Vgl. z. B. R. Zurmühl: Matrizen, 4. Aufl., Berlin/Göttingen/Heidelberg 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pflüger, A. (1975). Näherungslösungen für Eigenwertprobleme. In: Stabilitätsprobleme der Elastostatik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09994-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09994-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09995-7

  • Online ISBN: 978-3-662-09994-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics