Skip to main content

Materials Science and Engineering of Bulk Silicon Carbides

  • Chapter
SiC Power Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 73))

Abstract

This chapter highlights the main topics related to bulk silicon carbide growth and characterization, specifically for high-power electronics applications, with an emphasis on the practical issues faced by crystal growers. A brief summary is presented of the historical development of SiC from its initial use and method of growth through the evolution of new growth methods and the difficulties encountered in the production of this material. We then focus in detail on the most common method of crystal growth, the modified Lely method or physical vapor transport (PVT). The experimental aspects, in terms of furnace design, etc., are covered in addition to discussions of the primary parameters of crystal growth and their influence on growth rate and crystal quality. Theoretical considerations are presented to describe the PVT process and to provide the theoretical foundation for SiC crystal growth. The dominant defects that occur during growth and their mechanism of generation are discussed. Information is provided on the historical development of crystal growth from inception to commercial production. In addition to the growth of the commonly used n-doped SiC, the growth of p-doped and semi-insulating SiC boules is also presented. Also, the growth of SiC boules using a hightemperature chemical vapor deposition (HTCVD) process is discussed. The principal methods for material analysis (to analyze crystal quality) and defect characterization (to evaluate the nature, density, etc. of defects) are presented. Finally, the state of the art, future trends, and potential market applications are discussed to complete the overview of SiC growth and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Trew, J. Yan, and P.M. Mock, “The Potential of Diamond and SiC Electronic. Devices for Microwave and Millimeter-Wave Power Applications ”, Proc. IEEE 79, 598–620 (1991).

    Article  CAS  Google Scholar 

  2. A.R. Powell and L.B. Rowland, “SiC materials-Progress, status and potential roadblocks”, Proc. IEEE 90 (6), 942–955 (2002).

    Article  CAS  Google Scholar 

  3. J.L. Hudgins, “Wide and Narrow Bandgap Semiconductors for Power Electronics: A New Valuation”, J. Elect. Mat. 32 (6), 471 (2003).

    Article  CAS  Google Scholar 

  4. T.P. Chow and R. Tyagi, “Wide Bandgap Compound Semiconductors for Superior High Voltage Unipolar Power Devices”, IEEE Trans. ED 41, 1481 (1994).

    Article  CAS  Google Scholar 

  5. M. Bhatnagar and B.J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices”, IEEE Trans. ED 40, 645 (1993).

    Article  CAS  Google Scholar 

  6. B.J. Baliga, “Power semiconductor device figure of merit for high-frequency applications”, IEEE EDL 10, 455 (1989).

    Article  Google Scholar 

  7. R.C. Clarke and J.W. Palmour, “SiC Microwave Power Technologies”, Proc IEEE 90 (6), 987–992 (2002).

    Article  CAS  Google Scholar 

  8. W.F. Knippenberg, “Growth Phenomena in Silicon Carbide”, Philips Res. Reports 18, 161–274 (1963).

    CAS  Google Scholar 

  9. J.A. Lely, “Silizium carbide von Art und Mendge der eingebeunten verunreininungen”, Ber. Dtsch. Keram. Ges. (Germany) 32, 229 (1955).

    Google Scholar 

  10. Y.M. Tairov and V.F. Tsvetkov, “Investigation of Growth Processes of Ingots of Silicon Carbide Single Crystals”, J. Cryst. Growth 43, 209 (1978).

    Article  CAS  Google Scholar 

  11. P.T.B. Schaffer, “Problems in Silicon Carbide Device Development”, Mat. Res. Bull. pp. S13 - S23 (1969).

    Google Scholar 

  12. W.F. Knippenberg and G. Verspui, Philips Res. Reports 21, 113 (1966).

    CAS  Google Scholar 

  13. R.C. Marshall, “Growth of Silicon Carbide from Solution”, Mat. Res. Bull. pp. S73 - S84 (1969).

    Google Scholar 

  14. Y.M. Tairov, “Growth of Bulk SiC”, Mat. Sci. Eng. B 29, 83–89 (1995).

    Article  Google Scholar 

  15. J. Smiltens, “The Growth of SiC Crystals from Vapor by the BridgmanStockbarger Method”, Mat. Res. Bull. S85 - S96 (1969).

    Google Scholar 

  16. M. Syväjärvi, High Growth Rate Epitaxy of SiC: growth processes and structural quality PhD Dissertation Linköping University, Linköping, Sweden 1999.

    Google Scholar 

  17. S. Nishino, T. Higashino, T. Tanaka, and J. Saraie, “Growth mechanism and defects in SiC prepared by sublimation method”, J. Crystal Growth 147, 339 (1995).

    Article  CAS  Google Scholar 

  18. F.C. Frank, “The influence of dislocations on crystal growth”, Disc. Faraday Soc. 5, 48 (1949).

    Article  Google Scholar 

  19. W.T. Read, Dislocations in crystals, McGraw-Hill, New York 1953.

    Google Scholar 

  20. W.J. Yang and P. Pirouz, In: Presented at Int. Conf. on Amorphous and Crystalline Silicon Carbide 1991 (October 1991).

    Google Scholar 

  21. R. Yakimova, M. Syväjärvi, T Iakimov, H. Jacobsson, A. KakanakovaGeorgieva, P. Råback, and E. Janzén, “Growth of silicon carbide: process-related defects”, Appl. Surf. Sci. 184, 27–36 (2001).

    Article  CAS  Google Scholar 

  22. V.D. Heydemann, G.S. Rohrer, E.K. Sanchez, and M. Skowronski, “The structural evolution of seed surfaces during the initial stages of physical vapor transport SiC growth”, Mater. Sci. Forum 264–268, 37 (1998).

    Article  Google Scholar 

  23. V.D. Heydemann, E.K. Sanchez, G.S. Rohrer, and M. Skowronski, “The structural evolution of Lely seeds during the initial stages of SiC sublimation growth”, in Power Semiconductor Materials and Devices,ed. by S. Pearton, F. Ren, R. Shul, S. Tenconi, and E. Wolfgang, Mater. Res. Soc. Proc. 483 Pittsburgh (1998), 295–301.

    Google Scholar 

  24. D. Hofmann, E. Schmitt, M. Bickermann, M. Kölbl, P.J. Wellmann, and A. Winnacker, “Analysis on defect generation during the SiC bulk growth process”, Mater. Sci. Eng. B 61–62, 48–53 (1999).

    Article  Google Scholar 

  25. R. Madar, M. Anikin, K. Chourou, M. Labeau, M. Pons, E. Blanquet, J.M. Dedulle, C. Bernard, S. Milita, and J. Baruchel, “Defects formation in sublimation grown 6H-SiC single crystal boules”, Diamond Relat. Mater. 6, 1249 (1997).

    CAS  Google Scholar 

  26. A.R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals John Wiley and Sons, Inc., New York 1966.

    Google Scholar 

  27. W. van Haeringen, P.A. Bobbert, and W.H. Backes, “On the Band Gap Variation in SiC Polytypes”, Phys. Stat. Sol. (b) 202, 63–79 (1997).

    Article  Google Scholar 

  28. R. Yakimova, T. lakimov, M. Syväjärvi, H. Jacobsson, P. Råback, A. Vehanen, and E. Janzén, “Polytype Stability and Defect Reduction in 4H-SiC Crystals Grown Via Sublimation Technique”, Proc. MRS Spring Meeting, April 5–9, San Francisco (1999).

    Google Scholar 

  29. R. Stein and P. Lanig, “Control of polytype formation by surface energy effects during the growth of SiC monocrystals by the sublimation method”, J. Cryst. Growth 131, 71 (1993).

    Article  CAS  Google Scholar 

  30. V.D. Heydemann, N. Schulze, D.L. Barrett, and G. Pensl, “Growth of 6H and 4H silicon carbide single crystals by the modified Lely process utilizing a dual-seed crystal method”, Appl. Phys. Lett. 69, 3728 (1996).

    Article  CAS  Google Scholar 

  31. G. Augustine, McD. Hobgood, V. Balakrishna, G. Dunne, and R.H. Hopkins, “Physical vapor transport growth and properties of SiC monocrystals of 4H polytype”, Phys. Stat. Sol. (b) 202, 137 (1997).

    Article  CAS  Google Scholar 

  32. S.G. Müller, R.C. Glass, H.M. Hobgood, V.F. Tsvetkov, M. Brady, D. Henshall, J.R. Jenny, D. Malta, and C.H. Carter Jr., “The status of SiC bulk growth from an industrial point of view”, J. Cryst. Growth 211, 325–332 (2000).

    Article  Google Scholar 

  33. S.G. Müller, R.C. Glass, H.M. Hobgood, V.F. Tsvetkov, M. Brady, D. Henshall, D. Malta, R. Singh, J. Palmour, and C.H. Carter Jr., “Progress in the industrial production of SiC substrates for semiconductor devices”, Mat. Sci. Eng. B 80, 327–331 (2001).

    Article  Google Scholar 

  34. M. Pons, E. Blanquet, J.M. Dedulle, I. Garcon, R. Madar and C. Bernard, “Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals”, J. Electrochem. Soc. 143 (11) 3727 (1996).

    Article  CAS  Google Scholar 

  35. Q.S. Chen, H. Zhang, and V. Prasad, “Heat transfer and kinetics of bulk growth of silicon carbide”, J. Cryst. Growth 230, 239 (2001).

    Article  CAS  Google Scholar 

  36. H.J. Rost, D. Siche, J. Dolle, W. Eiserbeck, T. Muller, D. Schultz, G. Wagner, and J. Woolweber, “Influence of different growth parameters and related conditions on 6H-SiC crystals grown by the modified Lely method”, Mater. Sci. Eng. B 61–62, 68 (1999).

    Article  Google Scholar 

  37. B.F. Yudin and B.G. Borisov, Refractories 7–8, 499, 8 44 (1967).

    Google Scholar 

  38. S.K. Lilov and I.Y. Yanchev, “Peculiarities of silicon carbide crystal growth under the diffusion mechanism of vapour transfer”, Adv. Mat. Optics Elect. 1, 203 (1992).

    Article  CAS  Google Scholar 

  39. S.K. Lilov, V.F. Tsvetkov, and B.F. Yudin, Izv. LETI 167, 63 (1975).

    Google Scholar 

  40. D.I. Cherednichenko, Y.I. Khlebnikov, R.V. Drachev, I.I. Khlebnikov, and T.S. Sudarshan, “Influence of crystal thickness on the SiC PVT growth rate,” Mater. Sci. Forum, 389–393, 95–98 (2002).

    Article  Google Scholar 

  41. R.V. Drachev, D.I. Cherednichenko, I.I. Khlebnikov, M. Parker, and T.S. Sudarshan, “Graphitization of the seeding surface during the heating stage of SiC PVT bulk growth” ECSCRM Linkoping, Sweden, Sept. 2002.

    Google Scholar 

  42. D.I. Cherednichenko, R.V. Drachev, I.I. Khlebnikov, X. Deng, and T.S. Sudarshan, “Thermal stress as the major factor of defect generation in SiC during PVT growth”, MRS Boston, MA, (2002).

    Google Scholar 

  43. R. Yakimova and E. Janzén, “Current status and advances in the growth of SiC”, Diamond Relat. Mater. 9, 432–438 (2000).

    CAS  Google Scholar 

  44. D.L. Barrett, J.P. McHugh, H.M. Hobgood, R.H. Hopkins, P.G. McMullin, R.C. Clarke, and W.J. Choyke, “Growth of large SiC single crystals”, J. Cryst. Growth 128, 358–362 (1993).

    Article  CAS  Google Scholar 

  45. J. Takahashi and N. Ohtani, “Modified-Lely SiC crystals grown in [1100] and [1120] directions”, Phys. Stat. Sol. (b) 202, 163 (1997).

    Article  CAS  Google Scholar 

  46. R.A. Stein, “Formation of macrodefects in SiC”, Physica B, 185, 211–216 (1993).

    Article  CAS  Google Scholar 

  47. J.W. Yang, “SiC: problems in crystal growth and polytypic transformation”, PhD Thesis, Case Western Reserve University (1993).

    Google Scholar 

  48. R.C. Glass, D. Henshall, V.F. Tsvetkov, and C.H. Carter Jr., “SiC Seeded Crystal Growth”, Phys. Stat. Sol. (b) 202, 149 (1997).

    Article  CAS  Google Scholar 

  49. M. Tuominen, R. Yakimova, A. Vehanen, and E. Janzén, “Defect origin and development in sublimation grown SiC boules”, Mater. Sci. Eng. B 57, 228–233 (1999).

    Article  Google Scholar 

  50. M. Dudley, S. Wang, W. Huang, C.H. Carter, Jr., V.F. Tsvetkov, and C. Fazi, “White-beam synchrotron topographic studies of defects in 6H-SiC single crystals”, J. Phys. D 28, A63 (1995).

    Article  CAS  Google Scholar 

  51. I. Khlebnikov, V.P. Madangarli, M.A. Khan, and T.S. Sudarshan, “Thick Film SiC Epitaxy For `Filling Up’ Micropipes”, Mater. Sci. Forum 264–268, 167–170 (1998).

    Article  Google Scholar 

  52. T.A. Khur, E.K. Sanchez, M. Skowronski, W.M. Vetter, and M. Dudley, “Hexagonal voids and the formation of micropipes during SiC sublimation growth”, J. Appl. Phys. 89, 4625, (2001).

    Article  Google Scholar 

  53. Y. Khlebnikov, “Investigation of the Growth Processes and Defect Formation in Epitaxial Layers and Bulk Crystals of Silicon Carbide,” PhD Thesis, University of South Carolina (2002).

    Google Scholar 

  54. I. Khlebnikov, D. Cheredinchenko, Y. Khlebnikov, and T.S. Sudarshan “Initial Stage of Crystallization in the Growth of Silicon Carbide on Substrates with Micropipes”, Mater. Sci. Forum 338–342, 59–62 (2000).

    Article  Google Scholar 

  55. Y.M. Tairov and V.F. Tsvetkov, in: First European Conference on Crystal Growth, Abstract Book, p. 188 (1976).

    Google Scholar 

  56. Y.M. Tairov and V.F. Tsvetkov, “General principles of growing large-size single crystals of various silicon carbide polytypes”, J. Cryst. Growth 52, 146–150 (1981).

    Article  CAS  Google Scholar 

  57. S. Nishino, “Bulk growth of SiC”, in: Properties of Silicon Carbide, ed. G. Harris, INSPEC, the Institution of Electrical Engineers, United Kingdom, 1995.

    Google Scholar 

  58. D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, and W.J. Choyke, “SiC boule growth by sublimation vapor transport”, J. Cryst. Growth 109, 17–23 (1991).

    Article  CAS  Google Scholar 

  59. M. Tuominen, R. Yakimova, R.C. Glass, T. Tuomi and E. Janzén, “Crystalline imperfections in 4H SiC grown with a seeded Lely method”, J. Cryst. Growth 144, 267–276 (1994).

    Article  CAS  Google Scholar 

  60. N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth of large high-quality SiC single crystals”, J. Cryst. Growth 237–239, 1180–1186 (2002).

    Article  Google Scholar 

  61. N.T. Son, B. Magnusson, Z. Zolnai, A. Ellison, and E. Janzén, “Defects in semi-insulating SiC substrates”, Mater. Sci. For. 433–436, 45–50 (2003).

    Google Scholar 

  62. S.G. Müller, M.F. Brady, W.H. Brixius, R.C. Glass, McD. Hobgood, J.R. Jenny, R.T. Leonard, D.P. Malta, A.R. Powell, V.F. Tsvetkov, S.T. Allen, J.W. Palmour, and C.H. Carter, Jr., “Sublimation-grown semi-insulating SiC for high frequency devices”, Mater. Sci. For. 433–436, 39–44 (2003).

    Google Scholar 

  63. M. Bickermann, D. Hofmann, T.L. Straubinger, R. Weingärtner, and A. Winnacker, “Preparation of semi-insulating silicon carbide by vanadium doping during PVT bulk crystal growth”, Mater. Sci. For. 433–436, 51–54 (2003).

    Google Scholar 

  64. A. Ellison, B. Magnusson, N.T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates”, Mater. Sci. For. 433–436, 33–38 (2003).

    Google Scholar 

  65. V.P. Rastegaev, D.D. Avrov, S.A. Reshanov, and A.O. Lebedev “Features of SiC single-crystals grown in vacuum using the LETI method”, Mater. Sci. Eng. B, 61–62, 77–81 (1999).

    Article  Google Scholar 

  66. T.L. Straubinger, M. Bickermann, R. Weingärtner, P.J. Wellmann, and A. Winnacker, “Aluminum p-type doping of silicon carbide crystals using a modified physical vapor transport growth method”, J. Cryst. Growth 240, 117–123 (2002).

    Article  CAS  Google Scholar 

  67. P.J. Wellmann, S. Bushevoy, and R. Weingärtner, “Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements”, Mater. Sci. Eng. B 80, 352 (2001).

    Article  Google Scholar 

  68. R.C. Glass, L.O. Kjellberg, V.F. Tsvetkov, J.E. Sundgren, and E. Janzén, “Structural macro-defects in 6H-SiC wafers”, J. Cryst. Growth 132, 504–512 (1993).

    Article  CAS  Google Scholar 

  69. M. Tuominen, E. Prieur, R. Yakimova, R.C. Glass, T. Tuomi and E. Janzén “Defect analysis in Lely-grown 6H SiC”, J. Crys. Growth 165, 233–244 (1996).

    Article  CAS  Google Scholar 

  70. R.P. Devaty and W.J. Choyke, “Optical Characterization of Silicon Carbide Polytypes”, Phys. Stat. Sol. (a) 162, 5–38 (1997).

    Article  CAS  Google Scholar 

  71. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, S. Wang, and C.H. Carter, Jr., “Direct evidence of micropipe-related pure superscrew dislocations in SiC”, Appl. Phys. Lett. 74, 353 (1999).

    CAS  Google Scholar 

  72. M. Dudley, W. Huang, S. Wang, J.A. Powell, P. Neudeck, and C. Fazi, “White-beam synchrotron topographic analysis of multi-polytype SiC device configurations”, J. Phys. D 28, A56 (1995).

    Article  CAS  Google Scholar 

  73. M. Dudley, X.R. Huang, and W. Vetter, “Contribution of X-ray topography and high-resolution diffraction to the study of defects in SiC”, J. Phys. D, 36, A30 (2003).

    Article  CAS  Google Scholar 

  74. K. Byrappa and T. Ohachi, Crystal Growth Technology, William Andrew publishing, New York, 2002.

    Google Scholar 

  75. X.Y. Ma, M. Parker, and T.S. Sudarshan, “Nondestructive defect delineation in SiC wafers based on an optical stress technique”, App. Phys. Lett. 80, 3298 (2002).

    Article  CAS  Google Scholar 

  76. X.Y. Ma, M. Parker, Y.F. Ma, T. Kubota, and T.S. Sudarshan, “Non-destructive SiC wafer evaluation based on an optical stress technique”, ECSCRM 2002, Linköping, Sweden (2002).

    Google Scholar 

  77. P.G. Neudeck, W. Huang, and M. Dudley, “Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (+++ 250 V) 4H-SiC p+n junction diodes — Part 1: DC properties”, IEEE Trans. Electron Dev. 46, 478 (1999).

    Article  CAS  Google Scholar 

  78. P.G. Neudeck and J.A. Powell, “Performance limiting micropipe defects in silicon carbide wafers,” IEEE Electron Dev. Lett. 15, 63–65 (1994).

    Article  CAS  Google Scholar 

  79. X.Y. Ma, T.S. Sudarshan, M. Dudley, and W. Vetter, “Extended SiC defects: polarized light microscopy and SWBXT ratification”, Jap. Appl. Phys. Lett. 42, L1077 - L1079 (2003).

    Article  CAS  Google Scholar 

  80. T. Kato, H. Ohsato, and T. Okuda, “Origin of the internal stress around the micropipe of 6H-SiC single crystal”, Mater. Sci. Forum 338–342, 449 (2000).

    Article  Google Scholar 

  81. E. Kalinina, A.S. Zubrilov, N.I. Kuznetsov, I.P. Nikitina, A.S. Tregubova, M.P. Shcheglov, and V.Ya. Bratus, “Structural, electrical and optical properties of bulk 4H and 6H p-type SiC”, Mater. Sci. Forum 338–342, 497 (2000).

    Article  Google Scholar 

  82. J.W. Faust, The etching of silicon carbide, in “Silicon Carbide a High Temperature Semiconductor” Proc. of the Conference on Silicon Carbide Boston MA April 2–3, 1959, Eds. J.R. O’Connor and J. Smiltens, Pergamon Press, 1960.

    Google Scholar 

  83. J.W. Faust, Y. Tung, and H.M. Liaw, A Study of Etch Pits on Pure Polytypes of SiC, in Silicon Carbide - 1973, Eds. R.C. Marshall, J.W. Faust, C.E. Ryan, University of South Carolina Press, Columbia, SC 1973.

    Google Scholar 

  84. J. Heindl, H.P. Strunk, V.D. Heydemann, and G. Pensl, “Micropipes: Hollow Tubes in Silicon Carbide”, Phys. Stat. Sol. (a) 162, 251 (1997).

    Article  CAS  Google Scholar 

  85. N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, and N. Kamiya “Step structures and dislocations of SiC single crystals grown by modified Lely method”, J. Cryst. Growth 191, 84–91 (1998).

    Article  CAS  Google Scholar 

  86. Author’s unpublished material.

    Google Scholar 

  87. M. Katsuno, N. Ohtani, T. Aigo, T. Fujimoto, H. Tsuge, H. Yashiro, M. Kanaya, “Structural properties of subgrain boundaries in bulk SiC crystals”, J. Cryst. Growth 216, 256–262 (2000).

    Article  CAS  Google Scholar 

  88. R. Yakimova, A.L. Hylen, M. Tuominen, M. Syväjärvi, and E. Janzén, “Preferential etching of SiC crystals”, Diamond Relat. Mater. 6, 1456–1458 (1997).

    CAS  Google Scholar 

  89. M. Syväjärvi, R. Yakimova, A.L. Hylen, and E. Janzén, “Anisotropy of dissolution and defect revealing on SiC surfaces”, J. Phys. Cond. Matter 11, 1004110046 (1999).

    Google Scholar 

  90. M. Syväjärvi, R. Yakimova, and E. Janzén, “Anisotropic etching of SiC”, J. Electrochem. Soc. 147, 3519–3522 (2000).

    Article  Google Scholar 

  91. M. Katsuno, N. Ohtani, J. Takahashi, T. Fujimoto, H. Yashiro, and M. Kanaya, “Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation”, Jap. J. Appl. Phys. Part 1, 38, 4661 (1999).

    Google Scholar 

  92. J. Takahashi, N. Ohtani, and M. Kanaya, “Structural defects in a-SiC single crystals grown by the modified-Lely method”, J. Cryst. Growth 167, 596–606 (1996).

    Article  CAS  Google Scholar 

  93. J. Takahashi, N. Ohtani, M. Katsuno, and S. Shinoyama, “Sublimation growth of 6H- and 4H-SiC single crystals in the [1100] and [1120] directions”, J. Cryst. Growth 181, 229–240 (1997).

    Google Scholar 

  94. R.T. Bondokov, I.I. Khlebnikov, T. Lashkov, E. Tupitsyn, G. Stratiy, Y. Khlebnikov, and T.S. Sudarshan “A Method for defect delineation in silicon carbide using potassium hydroxide vapor”, Jap. J. Appl. Phys. 41 (12) 7312–7316 (2002).

    Article  CAS  Google Scholar 

  95. H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P.A. Nilsson, J.P. Bergman, and P. Skytt, “Long term operation of 4.5 kV PiN and 2.5 kV JBS diodes”, Mater. Sci. Forum 353–356, 727–730 (2001).

    Article  Google Scholar 

  96. J.P. Bergman, H. Lendenmann, P.A. Nilsson, U. Lindefelt, and P. Skytt “Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes”, Mater. Sci. Forum 353–356, 299 (2001).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sudarshan, T. (2004). Materials Science and Engineering of Bulk Silicon Carbides. In: Feng, Z.C. (eds) SiC Power Materials. Springer Series in Materials Science, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09877-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09877-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05845-5

  • Online ISBN: 978-3-662-09877-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics