• Sharon A. Cermak
Part of the Rehabilitation und Prävention book series (REHABILITATION)


Der Begriff „Praxie“ bezeichnet „die Fähigkeit, eine gewollte Handlung durchzuführen“ und wurde von dem griechischen Wort für „tun, handeln, Tat, Übung“ abgeleitet (Safire 1989). Als „Dyspraxie“ bezeichnet man demzufolge Defizite beim Versuch der Interaktion mit dem individuellen Umfeld und der Einflußnahme auf dieses Umfeld (Ayres 1985).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abravanel, E. (1972a). How children combine vision and touch when perceiving the shape of objects. Perception and Psychophysics, 12, 171-Google Scholar
  2. Abravanel, E. (1972b). Short-term memory for shape information processed intra-and intermodally at three ages. Perceptual and Motor Skills, 35, 419–425PubMedCrossRefGoogle Scholar
  3. Agostoni, E., Coletti, A., Orlando, G., Tredici, G. (1983). Apraxia in deep cerebral lesions. Journal of Neurology, Neurosurgery, and Psychiatry 46, 804–808Google Scholar
  4. Ayres, A. J. (1965). Pattern of perceptual-motor dysfunction in children: A factor analysis study. Perceptual and Motor Skills, 20, 335–368Google Scholar
  5. Ayres, A. J. (1966). Interrelationships among perceptual-motor functions in children. American Journal of Occupational Therapy, 20, 68–71PubMedGoogle Scholar
  6. Ayres, A. J. (1969). Deficits in sensory integration in educationally handicapped children. Journal of Learning Disabilities, 2, 160–168CrossRefGoogle Scholar
  7. Ayres, A. J. (1971). Characteristics of types of sensory integrative dysfunction. American Journal of Occupational Therapy, 25, 329–334PubMedGoogle Scholar
  8. Ayres, A. J. (1972a). Sensory integration and learning disorders. Los Angeles: Western Psychological ServicesGoogle Scholar
  9. Ayres, A. J. (I 972b). Types of sensory integrative dysfunction among disabled learners. American Journal of Occupational Therapy, 26, 13–18Google Scholar
  10. Ayres, A. J. (1975). Sensorimotor foundations of academic ability. In W. M. Cruickshank,D. P. Hallahan (Eds.), Perceptual and teaming disabilities in children. Vol. 2: Research and theory, (pp. 301–358 ). New York: Syracuse UniversityGoogle Scholar
  11. Ayres, A. J. (1976). The effect of sensory integrative therapy on learning disabled children: The final report of a research project. Pasadena, CA: Center for the Study of Sensory Integrative DysfunctionGoogle Scholar
  12. Ayres, A. J. (1977). Cluster analyses of measures of sensory integration. American Journal of Occupational Therapy, 31, 362–366PubMedGoogle Scholar
  13. Ayres, A. J. (1979). Sensory integration and the child. Los Angeles: Western Psychological ServicesGoogle Scholar
  14. Ayres, A. J. (1985). Developmental dyspraxia and adult onset apraxia. Torrance, CA: Sensory Integration InternationalGoogle Scholar
  15. Ayres, A. J. (1989). Sensory Integration and Praxis Tests. Los Angeles: Western Psychological ServicesGoogle Scholar
  16. Ayres, A. J., Mailloux, Z., Wendler, C. L. (1987). Developmental dyspraxia: Is it a unitary function? Occupational Therapy Journal of Research, 7, 93–110Google Scholar
  17. Ayres, L. P. (1920). A scale for measuring the quality of handwriting in children. New York: Russell Sage FoundationGoogle Scholar
  18. Basso, A., Capitani, E., Laiacona, M., Zanobio, M. E. (1985). Crossed aphasia: One or more syndromes. Cortex, 21, 25–45Google Scholar
  19. Basso, A., Capitani, E., Sala, S., Laiacona, M.,,Spinnler, H. (1987). Ideornotor apraxia: A study of initial severity. Acta Neurology of Scandinavia, 76, 142–146Google Scholar
  20. Basso, A., Luzzatti, C., Spinnler, H. (1980). Is ideomotor apraxia the outcome of damage to well-defined regions of the left hemisphere? Journal of Neurology, Neurosurgery, and Psychiatry, 43, 118–126CrossRefGoogle Scholar
  21. Beery, E. (1989). The Developmental Test of Visual-Motor Integration (3rd rev.). Cleveland, OH: Modern CurriculumGoogle Scholar
  22. Benbow, M. (1990). Loops and other groups: A kinesthetic writing system. Tucson, AZ: Therapy Skill BuildersGoogle Scholar
  23. Benbow, M. D. (1987). Sensory and motor measurements of dynamic tripod skill. Unpublished master’s thesis, Boston UniversityGoogle Scholar
  24. Bezzi, R. (1962). A standardized manuscript scale for grades 1, 2, and 3. Journal of Education Research, 25, 339–340Google Scholar
  25. Brinkman, C., Porter, R. (1979). Supplemental motor area of the monkey: Activity of neurons during performance of a learned motor task. Journal of Neurophysiology, 42, 681–709Google Scholar
  26. Brookhart, J.M., Mountcastle, V.B. (1984). Sensory processes. Bethesda, MD: American Physiological SocietyGoogle Scholar
  27. Brooks, V.B. (1986). How does the limbic system assist motor learning? A limbic comparator hypothesis. Brain Behavior Evolution, 29, 29–53CrossRefGoogle Scholar
  28. Bruininks, R. H. (1978). Bruininks-Oseretsky Test of Motor Proficiency. Circle Pines, MN: American Guidance ServiceGoogle Scholar
  29. Cermak, S. (1985). Developmental dyspraxia. In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders, (pp. 225–248 ). New York: North-HollandGoogle Scholar
  30. Connolly, K.,Dalgleish, M. (1989). The emergence of a tool using skill in infancy. Developmental Psychology, 25, 894–912Google Scholar
  31. Conrad, K. E., Cermak, S. A., Drake, C. (1983). Differentiation of praxis among children. American Journal of Occupational Therapy, 37, 466–473PubMedCrossRefGoogle Scholar
  32. Dawdy, S. C. (1981). Pediatric neuropsychology: Caring for the developmentally dyspraxic child. Clinical Neuropsychology, 3, 30–37Google Scholar
  33. DeRenzi, E., Faglioni, P., Sorgato, P. (1982). Modality-specific and supramodal mechanisms of apraxia. Brain, 105, 301–312CrossRefGoogle Scholar
  34. DeRenzi, E., Motti, F., Nichelli, P. (1980). Imitating gestures. A quantitative approach to ideornotor apraxia. Archives of Neurology, 37, 6–10Google Scholar
  35. Dunn, W. (1990). Pediatric occupational therapy: Facilitating effective service provision. Thorofare, NJ: C. B. SlackGoogle Scholar
  36. Faglioni, P., Basso, A. (1985). Historical perspectives on neuroanatomical correlates of limb apraxia. In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders (pp. 3–44 ). New York: North-HollandGoogle Scholar
  37. Fidler, G. S., Fidler, J. W. (1978). Doing and becoming: Purposeful action and self-actualization. American Journal of Occupational Therapy, 32, 305–310Google Scholar
  38. Freeman, F. N. (1915). An analytical scale for judging handwriting. Elementary SchoolGoogle Scholar
  39. Journal, 15, 432–441Google Scholar
  40. Frostig, M., Lefever, W., Whittlesey, R. B. (1963). The Marianne Frostig Developmental Test of Visual Perception (1963 standardization). Palo Alto, CA: Consulting Psychologists Frostig, M., Lefever, W., Whittlesey, R. B. (1966). Scoring Manual for the Marianne FrostigGoogle Scholar
  41. Developmental Test of Visual Perception. Palo Alto, CA: Consulting Psychologists Geschwind, N. (1975). The apraxias: Neural mechanisms of disorders of learned movement. American Scientist, 63, 188–195Google Scholar
  42. Geschwind, N., Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology: 1. A hypothesis and a program for research. Archives of Neurology, 42, 428–459Google Scholar
  43. Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting and the acquiring of knowledge. Annual Review of Psychology, 39, 1–41CrossRefGoogle Scholar
  44. Gliner, J. A. (1985). Purposeful activity in motor learning theory: An event approach to motor skill acquisition. American Journal of Occupational Therapy, 39, 28–34Google Scholar
  45. Goldberg, G. (1985). Response and projection: A reinterpretation of the premotor concept. In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders (pp. 251–266 ). New York: North HollandGoogle Scholar
  46. Golden, J. (1987). Luria-Nebraska Neuropsychological Battery: Children’s Revision. Los Angeles: Western Psychological ServicesGoogle Scholar
  47. Gonzalez-Rothi, L. J., Mack, L., Heilman, K. M. (1986). Pantomime agnosia. Journal of Neurology, Neurosurgery and Psychiatry, 49, 451–454Google Scholar
  48. Gordon, N., McKinlay, 1. (Eds.) (1980). Helping clumsy children. New York: Churchill-LivingstoneGoogle Scholar
  49. Gubbay, S. S. (1975). The clumsy child. Philadelphia W. B. SaundersGoogle Scholar
  50. Gubbay, S. S. (1978). The management of developmental dyspraxia. Developmental Medicine and Child Neurology, 20, 643–646PubMedCrossRefGoogle Scholar
  51. Gubbay, S. S. (1979). The clumsy child. In F. C. Rose (Ed.), Pediatric neurology (pp. 145–160 ). London: BlackwellGoogle Scholar
  52. Gubbay, S. S. (1985). Clumsiness. In P. J. Vinken, G. W. Bruyn, H. L. Klawans (Eds.), Handbook of clinical neurology (rev. series) (pp. 159–167). New York: Elsevier Hainesworth, K., Siqueland,L. (1969). Early identification of children with learning disabilities: The Meeting Street School Screening Test. Providence, RI: Crippled Children and Adults of Rhode IslandGoogle Scholar
  53. Hoop, N. H. (1971a). Haptic perception in preschool children, part 1: Object recognition. American Journal of Occupational Therapy, 25, 340–344Google Scholar
  54. Hoop, N. H. (1971b). Haptic perception in preschool children, part 11: Object manipulation. American Journal of Occupational Therapy, 25, 415–419Google Scholar
  55. Jeannerod, M. (1988). The neural and behavioral organization of goal-directed movements: Oxford psychology series. Oxford: ClarendonGoogle Scholar
  56. Jennings, P. A. (1974). Haptic perception and form reproduction by kindergarten children. American Journal of Occupational Therapy, 28, 274–280PubMedGoogle Scholar
  57. Kaplan, E. (1968). The development of gesture. Unpublished doctoral dissertation, Clark University, Worcester, MAGoogle Scholar
  58. King, L. J. (1978). Toward a science of adaptive responses. American Journal of Occupational Therapy, 32, 429–437PubMedGoogle Scholar
  59. Kleinman, J.J. (1979). Developmental changes in haptic exploration and matching accuracy. Developmental Psychology, 15, 480–481CrossRefGoogle Scholar
  60. Knuckey, N., Apsimon, T., Gubbay, S.S. (1983)Computerized axial tomography in clumsy children with developmental apraxia and agnosia. Brain and Development, 5, 14–19Google Scholar
  61. Knuckey, N.,Gubbay, S. S. (1983). Clumsy children: A prognostic study. Australian Pediatric Journal, 19, 9–13Google Scholar
  62. Kolb, B., Whishaw, 1. Q. (1985). Can the study of praxis in animals aid in the study of apraxia in humans? In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders (pp. 203–224 ). New York: North-HollandGoogle Scholar
  63. Koppitz, M. (1963). Bender Gestalt Test for young children. New York: Grune and Stratton Larson, K. A. (1982). The sensory history of developmentally delayed children with and without tactile defensiveness. American Journal of Occupational Therapy, 36, 590–596Google Scholar
  64. Lederman, S. J., Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19, 342–368Google Scholar
  65. Levine, M. D. (1982). Pediatric Examination of Educational Readiness (PEER). Cambridge, MA: Educators Publishing ServiceGoogle Scholar
  66. Levine, M. D. (1983). Pediatric Early Elementary Examination (PEEX). Cambridge, MA: Educators Publishing ServiceGoogle Scholar
  67. Levine, M. D. (1984). Cumulative neurodevelopmental debts: Their impact on productivity in late middle childhood. In M. D. Levine and P. Satz (Eds.), Middle childhood: Development and dysfunction. Baltimore, MD: University ParkGoogle Scholar
  68. Levine, M. D. (1985). Pediatric Examination of Educational Readiness at Middle Childhood (Peeramid). Cambridge, MA: Educators Publishing ServiceGoogle Scholar
  69. Levine, M. D. (1987). Motor implementation. In M. D. Levine (Ed.), Developmental variation and learning disorders (pp. 208–240). Cambridge, MA: Educators Publishing Service Levine, M. D., Oberklaid, F., Meltzer, L. (1981). Developmental output failure; A study of low productivity in school aged children. Pediatrics, 67, 18–25Google Scholar
  70. Lezak, M.D. (1983). Neuropsychological assessment ( 2nd ed. ). New York: Oxford UniversityGoogle Scholar
  71. Lindner, K. J. (1986). Transfer to motor learning: From formal discipline to action systems theory. In L. D. Zaichkowsky,C. Z. Fuchs (Eds.), The psychology of motor behavior: Development, control, learning and performance (pp. 65–87 ). Ithaca, NY: Mouvement PublicationsGoogle Scholar
  72. Luria, A. R. (1963). Restoration of function after brain injury. New York: Pergamon Luria, A. R. ( 1980 ). Higher cortical functions in man. New York: Basic BooksGoogle Scholar
  73. Marteniuk, R. G. (1976). Information processing in motor skills. New York: Holt, Rinehart mand WinstonGoogle Scholar
  74. McHale, K. (1987). Integrating children with fine motor difficulties into regular classrooms. An approach to identifying and solving problems. Unpublished master’s thesis. Rhode Island College, Providence, RLGoogle Scholar
  75. Melzack, R., Southmayd, J. E. (1974). Dorsal column contributions to anticipatory motor behavior. Experimental Neurology, 42, 274–281PubMedCrossRefGoogle Scholar
  76. Miller, L. J. (1988). Miller Assessment for Preschoolers. San Antonio, TX: Psychological CorporationGoogle Scholar
  77. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., Acuna, C. (1975). Posterior parietal association cortex of the monkey: Command functions for operations within extra-personal space. Journal of Neurophysiology, 38, 871–908Google Scholar
  78. Mutti, M., Sterling, H. M., Spaulding, N. V. (1978). Quick Neurological Screening Test (rev. ed.). Novato, CA: Academic Therapy PublicationsGoogle Scholar
  79. Nass, R. (1983). Ontogenesis of hemispheric specializations: Apraxia with congenital left hemisphere lesions. Perceptual and motor skills, 57, 775–782Google Scholar
  80. Orpet, R. E. (1972). Frostig Movement Skills Test Battery. Palo Alto, CA: Consulting PsychologistsGoogle Scholar
  81. Overton, W., Jackson, J. (1973). The representation of imagined objects in action sequences: A developmental study. Child Development, 44, 309–314Google Scholar
  82. Paillard, J. (1982). Apraxia and the neurophysiology of motor control. Philosophical Transactions Royal Society of London, B298, 111–134CrossRefGoogle Scholar
  83. Parham, D. (1987). Evaluation of praxis in preschoolers. In Z. Mailloux (Ed.), Sensory integrative approaches in occupational therapy, (pp. 23–26). New York: Haworth Piaget, J., Inhelder, B. ( 1948 ). The child’s conception of space. New York: NortonGoogle Scholar
  84. Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Poeck, K. (1982). Two types of motor apraxia. Archives Italiennes de Biologie, 120, 361–369Google Scholar
  85. Rapcsak, S. Z.. Gonzalez-Rothi, L. J., Heilman, K, M. (1987). Apraxia in a patient with atypical cerebral dominance. Brain and Cognition, 6, 450–463CrossRefGoogle Scholar
  86. Reed, E. (1988). From the motor theory of perception to the perceptual control of action. In E. S. Reed (Ed.), James J. Gibson and the psychology of perception. New Haven, CT: Yale UniversityGoogle Scholar
  87. Roach, C., Kephart, C. (1966). The Purdue Perceptual-Motor Survey. San Antonio, TX: Psychological CorporationGoogle Scholar
  88. Roland, P. E., Larsen, B., Lassen, N. A., Skinhoj, E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology, 43, 118–136PubMedGoogle Scholar
  89. Roland, P. E., Skinhoj, E., Lassen, N. A., Larsen, B. (1980). Different cortical areas in man in organization of voluntary movements in extrapersonal space. Journal of Neurophysiology, 43, 137–150PubMedGoogle Scholar
  90. Royeen, C.B., Fortune, J.C. (1990). TIE: Touch inventory for school aged children. American Journal of Occupational Therapy, 44, 155–160Google Scholar
  91. Safire, W. ( 1989, June 11). Rethinking reclama. The New York Times Magazine, p. 20Google Scholar
  92. Schilder, P. (1935). The image and appearance of the human body. London: Routledge and Kegan PaulGoogle Scholar
  93. Schmidt, R.A. (1975). A schema theory to discrete motor skill learning. Psychological Review, 82, 225–260CrossRefGoogle Scholar
  94. Schmidt, R. A. (1988). Motor control and learning. A behavioral analysis ( 2nd ed. ). Champaign, IL: Human KineticsGoogle Scholar
  95. Schneck, C. M. (1988). Developmental changes in the use of writing tools in normal 3.0 to 6. 11 year old children. Unpublished doctoral dissertation, Boston UniversityGoogle Scholar
  96. Shapiro, D. C., Schmidt, R. A. (1982). The schema theory: Recent evidence and developmental implications. In J. A. S. Kelso,J. E. Clark (Eds.), The development of motor control and co-ordination, (pp. 113–150). New York: John Wiley and SonsGoogle Scholar
  97. Shaw, L., Levine, M., Belfer, M. (1982). Developmental double jeopardy: A study of clumsiness and self-esteem in children with learning problems. Journal of Developmental Behavior Pediatrics, 3, 191–196Google Scholar
  98. Siegel, L. S., Feldman, W. (1983). Nondyslexic children with combined writing and arithmetic learning disabilities. Journal of Clinical Pediatrics, 22, 241–244CrossRefGoogle Scholar
  99. Stott, D.H., Moyes, F. A., Henderson, S. E. (1984). The Test of Motor Impairment (Henderson rev.) San Antonio, TX: The Psychological Corporation Thorndike, E. L. (1910). American handwriting scale. Teacher’s College Record, 11, 83–175Google Scholar
  100. Vierck, C. J. (1978). Interpretations of the sensory and motor consequences of dorsal column lesions. In G. Gordon (Ed.), Active touch: The mechanisms of recognition of objects by manipulation: A multidisciplinary approach, (pp. 139–160 ). Oxford: PergamonGoogle Scholar
  101. Wachs, H., Vaughn, L. (1977). Wachs analysis of cognitive structures. Los Angeles: Western Psychological ServicesGoogle Scholar
  102. Wall, P. D. (1970). Sensory role of impulses traveling in the dorsal columns. Brain, 93, 505–524PubMedCrossRefGoogle Scholar
  103. Walton, J. N., Ellis, E., Court, S. D. M. (1963). Clumsy children: A study of developmental apraxia and agnosia. Brain, 85, 603–613Google Scholar
  104. Watson, R. T., Fleet, W. S., Gonzalez-Rothi, L., Heilman, K. M. (1986). Apraxia and the supplemental motor area. Archives of Neurology, 43, 787–792PubMedCrossRefGoogle Scholar
  105. Wolff, P. (1972). The role of stimulus-correlated activity in children’s recognition of nonsense forms. Journal of Experimental Child Psychology, 24, 427–441CrossRefGoogle Scholar
  106. Zaporozhets, A. V. (1965). The development of perception in the preschool child. Monographs of the Society for Research in Child Development, 30, 82–101PubMedCrossRefGoogle Scholar
  107. Zaporozhets, A. V. (1969). Some of the psychological problems of sensory training in early childhood and the preschool period. In A.R. Leont’ev, A.R. Luria (Eds.), A handbook of contemporary soviet psychology (pp. 86–120 ). New York: Basic BookGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sharon A. Cermak

There are no affiliations available

Personalised recommendations