Skip to main content

Abstract

The attenuation properties of the various kinds of tissue in the patient’s body with respect to X-ray photons in the energy range of about 10 keV to 150 keV is determined principally by the photoelectric effect and Compton scattering (see Chap. II.2). Therefore, in X-ray imaging, photons emitted from the focal spot of the X-ray tube enter the patient, where they may be absorbed, transmitted without interaction (primary photons) or scattered (secondary photons). The radiation image is formed from the emergent primary photons while impaired by the secondary photons (see Chaps. II.5 and III.2). By the interaction of all these photons with a suitable image receptor, the radiographic image is built up. So the X-ray image consists of a two-dimensional projection of the attenuating properties of the tissues in the three-dimensional volume of the patient’s body along the path of the X-ray photons superimposed by scattered radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CEC (Commission of the European Communities) (1996a) European guidelines on quality criteria for diagnostic radiographic images. EUR 16260. CEC, Luxemburg

    Google Scholar 

  • CEC (1996b) European guidelines on quality criteria for diagnostic radiographic images in pediatrics. EUR 16261EN. CEC, Luxemburg

    Google Scholar 

  • Claasen (1962) Wozu Belichtungstabelle nach Punkten? SRW-Nachrichten 16: 29

    Google Scholar 

  • DIN (Deutsches Institut für Normung) (2002) Klinische Dosimetrie: Verfahren zur Ermittlung der Patientendosis in der Röntgendiagnostik. DIN 6809, Part 7 ( Draft). Beuth, Berlin

    Google Scholar 

  • Hammerstein GR, Miller DW, White DR, Masterson ME, Woodard HQ, Laughlin JS (1979) Absorbed radiation dose in mammography. Radiology 130: 485–491

    PubMed  CAS  Google Scholar 

  • ICRU (International Commission on Radiation Units and Measurements) (1989) Tissue substitutes in radiation dosimetry and measurement. Report 44. ICRU, Bethesda, MD

    Google Scholar 

  • IEC (International Electrotechnical Commission) (1978) Characteristics of anti-scatter grids used in X-ray equipment. Publication 60627. IEC, Geneva

    Google Scholar 

  • IEC (International Electrotechnical Commission) (1984) Medical radiology — terminology. Publication 60788. IEC, Geneva

    Google Scholar 

  • IEC (International Electrotechnical Commission) (1988) Medical radiology — terminology. Publication 60788. IEC, Geneva

    Google Scholar 

  • IEC (1993) X-ray tube assemblies for medical diagnosis — characteristics of focal spots. Publication 60636. IEC, Geneva

    Google Scholar 

  • IEC (1999) Evaluation and routine testing in medical imaging departments. Part 3–1. Acceptance tests — imaging performance of X-ray equipment for radiographic and radioscopic systems. Publication 61223–3–1. IEC, Geneva

    Google Scholar 

  • IEC (2001a) Diagnostic X-ray imaging equipment — characteristics of general purpose and mammographic antiscatter grids. Publication 60627. IEC, Geneva

    Google Scholar 

  • IEC (200 lb) Medical diagnostic X-ray equipment — radiation conditions for use in the determination of characteristics. Publication 61267. IEC, Geneva

    Google Scholar 

  • ISO (International Standards Organisation) (2001) Photography — medical radiographic cassettes/screens/films and hard-copy imaging films — dimensions and specifications. Publication 4090

    Google Scholar 

  • Johns PC, Yaffe MJ (1987) X-ray characterization of normal and neoplastic breast tissues. Phys Med Biol 32: 675–695

    Article  PubMed  CAS  Google Scholar 

  • Meiler J (1949) Die in der Röntgendiagnostik verwendeten Spannungskurvenformen und ihr Einfluss auf Bildqualität und Röhrenbelastung. Fortschritte auf dem Gebiet der Röntgenstrahlen 72: 222–241

    Article  Google Scholar 

  • Sandborg M, Dance DR, Alm Carlsson G, Persliden J (1993) Selection of antiscatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials. Br J Radiol 66: 1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Sorenson JA, Floch J (1985) Scatter rejection by air gaps: an empirical model. Med Phys 12 (3): 308–316

    Article  PubMed  CAS  Google Scholar 

  • Yaffe M J (1992) Digital mammography. In: Haus AG, Yaffe MJ (eds) Syllabus: a categorical course in physics technical aspects of breast imaging. Radiological Society of North America, Oak Brook, pp 69–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aichinger, H., Dierker, J., Joite-Barfuß, S., Säbel, M. (2004). Penetration of X-rays. In: Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09654-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09654-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09656-7

  • Online ISBN: 978-3-662-09654-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics