Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 4))

Abstract

Multiple site experiments [1] have led to a new theoretical approach for ET beyond the single-pathway picture [2, 3, 4]. This approach emphasizes tubes — tightly grouped families of pathways — and looks for interactions between these families, rather than focussing on individual paths. In some cases, for a given donor D and acceptor A, the electron transfer can be thought of as “pathway-like”, wherein the protein bridge can be physically reduced to a tube without changing the overall coupling. In other cases, the transfer is characterized by multiple tubes which can interfere with one another, and a single path assumption will fail to identify all of the structural elements which control the coupling. Reducing the protein to only the relevant parts (tubes) that mediate the tunneling matrix element is a useful tool for understanding ET in a biological medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langen R., Chang I.J., Germanas J.R., Richards J.H., Winkler J.R. and Gray H.B. Science,268 (1995)1733–1735.

    Google Scholar 

  2. Beratan D.N., Onuchic J.N. and Hopfield J.J., J. Chem. Phys., 86 (1987) 4488–4498.

    Article  ADS  Google Scholar 

  3. Beratan D.N., Betts J.N. and Onuchic J.N., Science, 252 (1991) 1285.

    Google Scholar 

  4. Onuchic J.N., Beratan D.N., Winkler J.R. and Gray H.B., Annu. Rev. Biophys. Biomol. Struct., 21 (1992) 349–377.

    Article  Google Scholar 

  5. Ashcroft N.W. and Mermin N.D. Solid State Physics. W.B.Saunders, New York, (1976).

    Google Scholar 

  6. Skourtis S.S. and Onuchic J.N., Chem. Phys. Lett. 209 (1993) 171–177.

    Article  ADS  Google Scholar 

  7. Turro N.J., Murphy C.J., Arkin M.A., Jenkins Y., Ghatlia N.D., Boss-mann S.H. and Barton J.K., Science, 262 (1993) 1025–1029.

    Article  ADS  Google Scholar 

  8. de Rege P.J.F., Williams S A and Therien M.J., Science,(1995) in press.

    Google Scholar 

  9. Beratan D.N., J. Am. Chem. Soc., 108 (1986) 4321–4326.

    Article  Google Scholar 

  10. Onuchic J.N. and Beratan D., J. Chem. Phys., 92 (1990) 722–733.

    Article  ADS  Google Scholar 

  11. Beratan D.N. and Onuchic J.N., Photosyn. Res., 22 (1989) 173.

    Article  Google Scholar 

  12. Löwdin P.O., J. Math. Phys., 3 (1962) 969.

    Article  ADS  MATH  Google Scholar 

  13. Gama A.A.S.da, J. Theor. Biol., 142 (1990) 251–260.

    Article  Google Scholar 

  14. Onuchic J.N., Andrade P.C.P. and Beratan D.N., J. Chem. Phys., 95 (1991) 1131.

    Article  ADS  Google Scholar 

  15. Adman E.T. and Jensen L.H., Isr. J. Chem., 21 (1981) 8–120.

    Google Scholar 

  16. Gray H.B., Chem. Soc. Rev., 15 (1986) 17–30.

    Article  Google Scholar 

  17. Sykes A.G., Advances Inorg. Chem., 36 (1991) 377–408.

    Article  Google Scholar 

  18. Nar H., Messerschmidt A., Huber R., Van de Kamp M. and Canters G.W., J. Mol. Biol., 218 (1991) 427–447.

    Article  Google Scholar 

  19. Van de Kamp M., Floris R., Hall F.C. and Canters G.W., J. Am. Chem. Soc., 112 (1990) 907–908.

    Article  Google Scholar 

  20. Van de Kamp M., Silvestrini M.C., Brunori M., Beeumen J. van, Hall F.C. and Canters G.W., Eur. J. Biochem., 194 (1990) 109–118.

    Google Scholar 

  21. Mikkelsen K.V., Skov L.K., Nar H. and Farver O., Proc. Natl. Acad. Sci. USA, 90 (1993) 5443–5445.

    Article  ADS  Google Scholar 

  22. Farver O. and Pecht I., J. Am. Chem. Soc., 114 (1992) 5764–5767.

    Article  Google Scholar 

  23. Farver O., Skov L.K., Nar H., Van de Kamp M., Canters G.W. and Pecht I., Eur. J. Biochem., 210 (1992) 399–403.

    Article  Google Scholar 

  24. Farver O., Skov L.K., Pascher T., Karlsson B.G., Nordling M., Lundberg L.G., Vänngârd T. and Pecht I., Biochemistry, 32 (1993) 7317–7322.

    Article  Google Scholar 

  25. Broo A. and Larsson S., J. Phys. Chem., 95 (1991) 4925–4928.

    Article  Google Scholar 

  26. Regan J.J., Bilio A.J. Di, Langen R., Skov L.K., Winkler J.R., Gray H.B. and Onuchic J.N., Chemistry and Biology, 2 (1995) 489–496.

    Article  Google Scholar 

  27. Nar H. Messerschmidt A., Huber R., Van de Kamp M. and Canters G.W., J. Mol. Biol., 221 (1991) 765–772.

    Google Scholar 

  28. Regan J.J., Risser S.M., Beratan D.N. and Onuchic J.N., J. Phys. Chem., 97 (1993) 13083–13088.

    Article  Google Scholar 

  29. Solomon E.I. and Lowery M.D., Science, 259 (1993) 1575–1581.

    Article  ADS  Google Scholar 

  30. From the coordinates of chain “A”, one of four azurin molecules in the unit cell of Brookhaven Protein Data Bank entry “4AZU” [18, 27]. Molecular replacement and energy minimization performed with Enzymix [33].

    Google Scholar 

  31. Lowery M.D. and Solomon E.I. Inorg. Chim. Acta,200 (1992) 233–243.

    Google Scholar 

  32. Solomon E.I., Baldwin M.J. and Lowery M.D., Chem. Rev., 92 (1992) 521–542.

    Article  Google Scholar 

  33. Lee F.S., Chu Z.T. and Warshel A., J. Comput. Chem., 14 (1993) 161–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Regan, J.J., Onuchic, J.N. (1996). A Tubular View of Electron Transfer in Azurin. In: Bicout, D., Field, M. (eds) Quantum Mechanical Simulation Methods for Studying Biological Systems. Centre de Physique des Houches, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09638-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09638-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60869-1

  • Online ISBN: 978-3-662-09638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics