Advertisement

Thermische Oxidation

  • P. Seegebrecht
  • N. Bündgens
Part of the Mikroelektronik book series (MIKROELEKTRONIK)

Zusammenfassung

Ein wesentlicher Vorteil des Siliziums gegenüber anderen Halbleitermaterialien besteht darin, daß sich durch die thermische Oxidation auf einfache Weise eine stabile Oxidschicht herstellen läßt. Diese Schicht übernimmt während der Herstellung der integrierten Schaltungen die Funktion der Maskierung bei der lokalen Modifikation des Siliziums (Diffusionsbarriere) sowie die elektrische Isolation zwischen den Bauelementstrukturen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [6.1]
    Ligenza, J.R.; Spitzer, W.G.: The Mechanism for Silicon Oxidation in Steam and Oxygen. J. Phys. Chem. Solids 14 (1960) 131–136CrossRefGoogle Scholar
  2. [6.2]
    Jorgensen, P.J.: Effect of an Electric Field on Silicon Oxidation. J. Chem. Phys. 37 (1962) 874–877CrossRefGoogle Scholar
  3. [6.3]
    Deal, B.E; Grove, A.S: General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36 (1965) 3770–3778CrossRefGoogle Scholar
  4. [6.4]
    Wolters, D.R.: On the Oxidation Kinetics of Silicon: The Role of Water. J. Electrochem. Soc. 127 (1980) 2072–2082CrossRefGoogle Scholar
  5. [6.5]
    Massoud, H.Z.; Plummer, J.D.; Irene, E.A.: Thermal Oxidation of Silicon in Dry Oxygen: Accurate Determination of the Kinetic Rate Constants. J. Electrochem. Soc. 132 (1985) 1745–1753CrossRefGoogle Scholar
  6. [6.6]
    Naito, M.; Homma, H.; Momma, N: A Practical Model for Growth Kinetics of Thermal SiO2 on Silicon Applicable to a Wide Range of Oxide Thickness. Solid State Electronics 29 (1986) 885–891CrossRefGoogle Scholar
  7. [6.7]
    Blanc, J.: On Modeling the Oxidation of Silicon by Dry Oxygen. J. Electrochem. Soc. 133 (1986) 1981–1982CrossRefGoogle Scholar
  8. [6.8]
    Nicollian, E.H.; Reisman, A.: A New Model for the Thermal Oxidation Kinetics of Silicon. J. Electronic Materials 17 (1988) 263–272CrossRefGoogle Scholar
  9. [6.9]
    Revesz, A.G.; Mrstik, B.J.; Hughes, H.L.; McCarthy, D.: Structure of SiO2 Films on Silicon as Revealed by Oxygen Transport. J. Electrochem. Soc. 133 (1986) 586–592CrossRefGoogle Scholar
  10. [6.10]
    Han, C.J.; Helms, C.R.: Parallel Oxidation Mechanism for Si Oxidation in Dry 02. J. Electrochem. Soc. 134 (1987) 1297–1302CrossRefGoogle Scholar
  11. [6.11]
    Massoud, H.Z.; Plummer, J.D.; Irene, E.A.: Thermal Oxidation of Silicon in Dry Oxygen: Growth Rate Enhancement in the Thin Regime. J. Electrochem. Soc. 132 (1985) 2693–2700CrossRefGoogle Scholar
  12. [6.11]
    Murali, V.; Murarka, S.P.: Kinetics of Ultrathin Si02 Growth. J. Appl. Phys. 60 (1986) 2106–2114CrossRefGoogle Scholar
  13. [6.13]
    Burn, I.; Roberts, J.P.: Influence of Hydroxyl Content on the Diffusion of Water in Silica Glass. Physics and Chemnistry of Glasses 11 (1970) 106–114Google Scholar
  14. [6.14]
    Lie, L.N.; Razouk, R.R.; Deal, B.E.: High Pressure Oxidation of Silicon in Dry Oxygen. J. Electrochem. Soc. 129 (1982) 2828–2834CrossRefGoogle Scholar
  15. [6.14]
    Ho, C.; Plummer, J.D.: Si/Si02 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels. J. Electrochem. Soc. 126 (1979) 1516–1522CrossRefGoogle Scholar
  16. [6.16]
    Irene, E.A.; Dong, D.W.: Silicon Oxidation Studies: The Oxidation of Heavely B- and P-Doped Single Crystal Silicon. J. Electrochem. Soc. 125 (1978) 1146–1151CrossRefGoogle Scholar
  17. [6.17]
    Revesz, A.G.; Evans, R.J.: Kinetics and Mechanism of Thermal Oxidation of Silicon with Special Emphasis on Impurity Effects. J. Phys. Chem. Solids 30 (1969) 551–564CrossRefGoogle Scholar
  18. [6.18]
    Deal, B.E.; Hess, D.W.; Plummer, J.D.; Ho, C.: Kinetics of the Thermal Oxidation of Silicon in 02/1120 and 02/C12 Mixtures. J. Electrochem. Soc. 125 (1978) 339–346CrossRefGoogle Scholar
  19. [6.19]
    Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press. Inc. 1985Google Scholar
  20. [6.
    ] Br?unig, D.: Wirkung hochenergetischer Strahlung auf Halbleiterbauelemente. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989Google Scholar
  21. [6.21] Nicollian, E.H.; Brews, J.R.: MOS (Metal Oxide Semiconductor)
    Physics and Technology. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons 1982Google Scholar
  22. [6.22]
    Sze, S.M.: Physics of Semiconductor Devices, 2nd Edition. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons 1981Google Scholar
  23. [6.23]
    Wolters, D.R.; van der Schoot, J.J.; Porter, T.; Verweij, J.F. (ed.): Damage Caused by Charge Injection. In: Insulating Films on Semiconductors. North-Holland 1983Google Scholar
  24. [6.24]
    Hearn, E.W.; Werner, D.J.; Doney, D.A.: Film-Induced Stress Model. J. Electrochem. Soc. 133 (1986) 1749–1751CrossRefGoogle Scholar
  25. [6.25]
    Bhattacharyya, A.; Vorst, C.; Carin, A.H.: A Two-Step Oxidation Process to Improve the Electrical Breakdown Properties of Thin Oxides. J. Electrochem. Soc. 132 (1985) 1900–1908CrossRefGoogle Scholar
  26. [6.26]
    EerNisse, E.P.: Stress in Thermal Si02 during growth. Appl. Phys. Lett. 35 (1979) 8–10CrossRefGoogle Scholar
  27. [6.27]
    EerNisse, E.P.; Derbenwick, G.F.: Viscous Shear Flow Model for MOS Device Radiation Sensitivity. IEEE Trans. Nucl. Science NS-23 (1976) 1534–1539Google Scholar
  28. [6.28]
    Chin, D.; Oh, S.Y.; Dutton, R.W.: A General Solution Method for Two-Dimensional Nonplanar Oxidation. IEEE Electr. Dev. ED-30 (1983) 993–998Google Scholar
  29. [6.29]
    Lin, A.M.; Dutton, R.W.; Antoniades, D.A.; Tiller, W.A.: The Growth of Oxidation Stacking Faults and the Point Defect Generation at Si-Sí02 Interface during Thermal Oxidation of Silicon. J. Electrochem. Soc. 128 (1981) 1121–1130CrossRefGoogle Scholar
  30. [6.
    ] Declerck, G.J.: The Role and Effects of Cl in the Thermal Oxidation of Silicon. In: Solid State Devices 1979, Institute of Physics Conference Series No. 53 (1979) 133–153Google Scholar
  31. [6.31]
    Weber, E.R.: Transition Metals in Silicon. Appl. Phys. A 30 (1983) 1–22CrossRefGoogle Scholar
  32. [6.32]
    Foster, B.D.; ‘Pressler, R.E.: Silicon Processing with Silicon Carbide Furnace Components. Solid State Technology (Oct. 1984) 143–146Google Scholar
  33. [6.33]
    Moss, S.J.; Ledwith,A. (Eds.): The Chemistry of the Semiconductor Industry. Glasgow, London: Blackie 1987, S. 23Google Scholar
  34. [6.
    ] Westdeutsche Quarzschmelze, Geesthacht; Firmenschrift: Quarzglas für die Halbleiterindustrie, Neue Qualit?t 214LSGoogle Scholar
  35. [6.
    ] Norton, Worcester; Firmenschrift: Experimental Results of CRYSTAR XP, Form 4799–014Google Scholar
  36. [6.
    ] Heraeus Quarzschmelze, Hanau; Firmenschrift: Quarzglas und Quarzgut, Q-A 1/112.2Google Scholar
  37. [6.37]
    Schmidt, P.F.: A Neutron Activation Analysis Study of the Sources of Transition Group Metal Contamination in the Silicon Device Manufacturing Process. J. Electrochem. Soc. 128 (1981) 630–637CrossRefGoogle Scholar
  38. [6.38]
    Schmidt, P.F.: Contamination-free High Temperature Treatment of Silicon or other Materials. J. Electrochem. Soc. 130 (1983) 196–199CrossRefGoogle Scholar
  39. [6.
    ] Eisele, K.M.: Stabilized Fused-Quartz Tubes with Reduced Sodium Diffusion for Semiconductor Device Technology. J. Electrochem. Soc. 125 (1978) 11881190Google Scholar
  40. [6.40]
    Thomas, R.C.: Noncontaminating Gas Distribution Systems. Solid State Technology (Sept. 1985) 153–158Google Scholar
  41. [6.41]
    Accomazzo, M.A. et al.: Ultrahigh Efficiency Membrane Filters for Semiconductor Process Gases. Solid State Technology (March 1984) 141–146Google Scholar
  42. [6.42]
    Janssens, E.J.; Declerck, G.J.: The Use of 1.1.1. Trichloroethane as an Optimized Additive to Improve the Silicon Thermal Oxidation Technology. J. Electrochem. Soc. 125 (1978)Google Scholar
  43. [6.43]
    Waugh, A.; Foster, B.D.: Design and Performance of Silicon Carbide Cantilever Paddles in Semiconductor Diffusion Furnaces. Am. Ceramic Soc. Bull. 64 (1985) 550–554Google Scholar
  44. [6.44]
    Tay, S.P.; Ellul, J.P.: High Pressure Technology for Silicon IC Fabrication. Semiconductor International (May 1986)Google Scholar
  45. [6.45]
    Hayafuji, Y.; Kajiwara, K.: Nitridation of Silicon and Oxidized Silicon. J. Electrochem. Soc. 129 (1982) 2102–2108CrossRefGoogle Scholar
  46. [6.46] Seidel, T.E. et al.: A Review of Thermal Annealing (RTA)
    of B, BF2 and As Ions Implanted into Silicon. Nucl. Instr. Meth. Phys. Res. B 7 /8 (1985) 251–260Google Scholar
  47. [6.47]
    Kato, J.; Iwamatsu, S.: Rapid Annealing using Halogen Lamps. J. Electrochem. Soc. (1984) 1145–1152Google Scholar
  48. [6.48]
    Kernani, A. et al.: Process Control of Titanium Silicide Formation using Rapid Thermal Processing. Proc. 6th Int. Conf. Ion Implant 1986Google Scholar
  49. [6.49]
    Mercier, J.S.: Rapid Flow of Doped Glasses for VLSI Fabrication. Solid State Technol. (July 1987) 85–90Google Scholar
  50. [6.50]
    Faith, T.J.; Wu, C.P.: Elimination of Hillocks on Al-Si Metallization by FastHeat-Pulse Alloying. Appl. Phys. Lett. 45 (1984) 470–472CrossRefGoogle Scholar
  51. [6.51]
    Nulman, J. et al.: Rapid Thermal Processing of Thin Gate Dielectrics. Oxidation of Silicon. IEEE El. Dev. Lett. EDL-6 (1985) 205–207Google Scholar
  52. [6.52]
    van Houtum, H.J.W.; Jonkers, A.G.M.: Temperature Control in the Heatpulse 610 System. Nat.Lab. Technical Note 292/86, Philips Research Laboratories, Eindhoven 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P. Seegebrecht
  • N. Bündgens

There are no affiliations available

Personalised recommendations