Skip to main content

Diagnosis of Rhabdomyosarcomas with Particular Reference to Immunohistochemical Markers

  • Chapter
Progress in Surgical Pathology

Abstract

Soft tissue sarcomas account for about 6% of all cancers in children and young adults, and at least half of them are rhabdomyosarcomas.1 The age range, sites of origin, morphology, and pathological classification of these tumors have been fully documented2–6 and only a few comments need to be made here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Incidence of Childhood Cancer. IARC Scientific Publications No. 87. Lyon, 1988

    Google Scholar 

  2. Bale PM, Parsons RE, Stevens MM: Pathology and behaviour of juvenile rhabdomyosarcoma, in Finegold, M (ed): Pathology of Neoplasia in Children and Adolescents, Philadelphia, W.B. Saunders; 196–222; 1986

    Google Scholar 

  3. Shimada H, Newton WA, Soule EH, Beltangady MS, Maurer HM: Pathology of fatal rhabdomyosarcoma. Cancer 59:459–465, 1987

    PubMed  CAS  Google Scholar 

  4. Newton WA, Soule EH, Hamoudi AB, et al: Histopathology of childhood sarcomas, Intergroup Rhabdomyosarcoma Studies I and II: clinicopathologic correlation. J Clin Oncol 6:67–75, 1988

    PubMed  Google Scholar 

  5. Rodary C, Rey A, Olive D, et al: Prognostic factors in 281 children with nonmetastatic rhabdomyosarcoma (RMS) at diagnosis. Med Ped Oncol 16:71–77, 1988

    CAS  Google Scholar 

  6. Enzinger FM, Weiss SW: Soft Tissue Tumors, 448–488. St. Louis, C.V. Mosby, 1988

    Google Scholar 

  7. Horn RC, Enterline HT: Rhabdomyosarcoma: A clinico-pathological study of 39 cases. Cancer 11:181–199, 1958

    PubMed  Google Scholar 

  8. Caillaud JM, Gerard-Marchant R, Marsden HB, et al: Histopathological classification of childhood rhabdomyosarcoma: A report from the International Society of Pediatric Oncology Pathology Panel. Med Ped Oncol 17:391–400, 1989

    CAS  Google Scholar 

  9. Molenaar WM, Oosterhuis JW, Kamps WA: Cytologic “differentiation” in childhood rhabdomyosarcomas following polychemotherapy. Hum Pathol 15:973–979, 1984

    PubMed  CAS  Google Scholar 

  10. Takizawa T, Matsui T, Maeda Y, et al: X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma. Lab Invest 60:22–29, 1989

    PubMed  CAS  Google Scholar 

  11. Mierau GW, Berry PJ, Orsini EN: Small round cell neoplasms: Can electron microscopy and im-munohistochemical studies accurately classify them? Ultrastruct Pathol 9:99–111, 1985

    PubMed  CAS  Google Scholar 

  12. Erlandson RA: The ultrastructural distinction between rhabdomyosarcoma and other undifferentiated “sarcomas.” Ultrastruct Pathol 11:83–101, 1987

    PubMed  CAS  Google Scholar 

  13. Mierau GW, Favara BE: Rhabdomyosarcoma in children. Cancer 46:2035–2040, 1980

    PubMed  CAS  Google Scholar 

  14. Bundtzen JL, Norback DH: The ultrastructure of poorly differentiated rhabdomyosarcomas. Hum Pathol 13:301–313, 1982

    PubMed  CAS  Google Scholar 

  15. Triche TJ, Askin FB, Kissane JM: Neuroblastoma, Ewing’s sarcoma, and the differential diagnosis of small-, round-, blue-cell tumors, in Finegold, M (ed): Pathology of Neoplasia in Children and Adolescents, Philadelphia, W.B. Saunders; 1986

    Google Scholar 

  16. Dickman PS, Triche TJ: Extraosseous Ewing’s sarcoma versus primitive rhabdomyosarcoma: Diagnostic criteria and clinical correlation. Hum Pathol 17:881–893, 1986

    PubMed  CAS  Google Scholar 

  17. Alberts B, Bray D, Lewis J, Roff M, Roberts K, Watson JD: Molecular Biology of the Cell, 2nd ed 613–680. New York, Garland Publishing, 1989

    Google Scholar 

  18. Kemshead JT, Fritschy J, Goldman A, Malpas JS, Pritchard J: Use of panels of monoclonal antibodies in the differential diagnosis of neuroblastoma and lymphoblastic disorders. Lancet 1:12–15, 1983

    PubMed  CAS  Google Scholar 

  19. Darbyshire PJ, Bourne SP, Allan PM, et al: The use of a panel of monoclonal antibodies in pediatric oncology. Cancer 59:726–730, 1987

    PubMed  CAS  Google Scholar 

  20. Oppedal BR, Brandtzaeg P, Kemshead JT: Immunohistochemical differentiation of neuroblastomas from other small round cell neoplasms of childhood using a panel of mono- and polyclonal antibodies. Histopathology 11:363–374, 1987

    PubMed  CAS  Google Scholar 

  21. Pilkington GR, Pallesen G: Phenotypic characterization of non-haemopoietic small cell tumors of childhood with monoclonal antibodies to leucocytes, epithelial cells and cytoskeletal proteins. Histopathology 14:347–357, 1989

    PubMed  CAS  Google Scholar 

  22. Erlandson RA: Diagnostic immunohistochemistry of human tumors. Am J Surg Pathol 8:615–624, 1984

    PubMed  CAS  Google Scholar 

  23. Mukai K, Rosai J, Hallaway BE: Localization of myoglobin in normal and neoplastic human skeletal muscle cells using an immunoperoxidase method. Am J Surg Pathol 3:373–376, 1979

    PubMed  CAS  Google Scholar 

  24. Corson JM, Pinkus GS: Intracellular myoglobin— a specific marker for skeletal muscle differentiation in soft tissue sarcomas. Am J Pathol 103:384–389, 1981

    PubMed  CAS  Google Scholar 

  25. Kindblom L-G, Seidal T, Karlsson K: Immuno-histochemical localization of myoglobin in human muscle tissue and embryonal and alveolar rhabdomyosarcoma. Acta Path Microbiol Immunol Scand Sect A 90:167–174, 1982

    CAS  Google Scholar 

  26. Brooks J J: Immunohistochemistry of soft tissue tumors: Myoglobin as a tumor marker for rhabdomyosarcoma. Cancer 50:1757–1763, 1982

    PubMed  CAS  Google Scholar 

  27. Kagawa N, Sano T, Inaba H, Mori K, Hizawa K: Immunohistochemistry of myoglobin in rhabdomyosarcomas. Acta Pathol Jpn 33:515–522, 1983

    PubMed  CAS  Google Scholar 

  28. Tsokos M, Howard R, Costa J: Immunohistochemical study of alveolar and embryonal rhabdomyosarcoma. Lab Invest 48:148–155, 1983

    PubMed  CAS  Google Scholar 

  29. Kahn HJ, Yeger H, Kassim O, et al: Immunohisto- chemical and electron microscopic assessment of childhood rhabdomyosarcoma: Increased frequency of diagnosis over routine histologic methods. Cancer 51:1897–1903, 1983

    PubMed  CAS  Google Scholar 

  30. de Jong ASH, van Vark M, Albus-Lutter CE, van Raamsdonk W, Voute PA: Myosin and myoglobin as tumor markers in the diagnosis of rhabdomyosarcoma: A comparative study. Am J Surg Pathol 8:521–528, 1984

    PubMed  CAS  Google Scholar 

  31. Eusebi V, Ceccarelli C, Gorza L, Schiaffino S, Bussolati G: Immunocytochemistry of rhabdomyosarcoma: The use of four different markers. Am J Surg Pathol 10:293–299, 1986

    PubMed  CAS  Google Scholar 

  32. Scupham R, Gilbert EF, Wilde J, Wiedrich TA: Immunohistochemical studies of rhabdomyosarcoma. Arch Pathol Lab Med 110:818–821, 1986

    PubMed  CAS  Google Scholar 

  33. Schmidt D, Reimann O, Treuner J, Harms D: Cellular differentiation and prognosis rhabdomyosarcoma. Virchows Arch [Pathol Anat] 409:183–194, 1986

    CAS  Google Scholar 

  34. Coindre J-M, de Mascarel A, Trojani M, de Mascarel I, Pages A: Immunohistochemical study of rhabdomyosarcoma. Unexpected staining with S100 protein and cytokeratin. J Pathol 155:127–132, 1988

    PubMed  CAS  Google Scholar 

  35. Dodd S, Malone M, McCulloch W: Rhabdomyo sarcoma in children: A histological and immunohistochemical study of 59 cases. J Pathol 158:13–18, 1989

    PubMed  CAS  Google Scholar 

  36. Carter RL, McCarthy KP, Machin LG, Jameson CF, Philp ER, Pinkerton CR: Expression of desmin and myoglobin in rhabdomyosarcomas and in developing skeletal muscle. Histopathology 15:585–595, 1989

    PubMed  CAS  Google Scholar 

  37. Carter RL, Jameson CF, Philp ER, Pinkerton CR: Comparative phenotypes in rhabdomyosarcomas and developing skeletal muscle. Histopathology 17:301–309, 1990

    PubMed  CAS  Google Scholar 

  38. Eusebi V, Bondi A, Rosai J: Immunohistochemical localization of myoglobin in nonmuscular cells. Am J Surg Pathol 8:51–55, 1984

    PubMed  CAS  Google Scholar 

  39. Caplan AI, Fiszman MY, Eppenberger HM: Molecular and cell isoforms during development. Science 221:921–927, 1983

    PubMed  CAS  Google Scholar 

  40. Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Harstrom I: Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 292:805–809, 1981

    PubMed  CAS  Google Scholar 

  41. Strohman RC, Micou-Eastwood J, Glass CA, Matsuda R: Human fetal muscle and cultured myotubes derived from it contain a fetal-specific myosin light chain. Science 221:955–957, 1983

    PubMed  CAS  Google Scholar 

  42. Biral D, Damiani E, Margreth A, Scarpini E: Myosin subunit composition in human developing muscle. Biochem J 224:923–931, 1984

    PubMed  CAS  Google Scholar 

  43. Billeter R, Weber H, Lutz H, Howald H, Eppenberger HM, Jenny E: Myosin types in human skeletal muscle fibers. Histochemistry 65:249–259, 1980

    PubMed  CAS  Google Scholar 

  44. Koh S-J, Johnson WW: Antimyosin and antirhab-domyoblast sera: Their use for the diagnosis of childhood rhabdomyosarcoma. Arch Pathol Lab Med 104:118–122, 1980

    PubMed  CAS  Google Scholar 

  45. Eusebi V, Rilke F, Ceccarelli C, Fedeli F, Schiaffino S, Bussolati G: Fetal heavy chain skeletal myosin. Am J Surg Pathol 10:680–686, 1986

    PubMed  CAS  Google Scholar 

  46. Schiaffino S, Gorza L, Sartore S, Saggin L, Carli M: Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study. Exp Cell Res 163:211–220, 1986

    PubMed  CAS  Google Scholar 

  47. Mukai K, Schollmeyer JV, Rosai J: Immunohisto-chemical localization of actin. Applications in surgical pathology. Am J Surg Pathol 5:91–97, 1981

    PubMed  CAS  Google Scholar 

  48. de Jong ASH, van Kessel-van Vark M, Albus Lutter CE, van Raamsdonk W, Voute PA: Skeletal muscle actin as tumor marker in the diagnosis of rhabdomyosarcoma in childhood. Am J Surg Pathol 9:467–474, 1985

    PubMed  Google Scholar 

  49. Skalli O, Gabbiani G, Babai F, Seemayer TA, Pizzolato G, Schurch W: Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am J Pathol 130:515–531, 1988

    CAS  Google Scholar 

  50. Schmidt RA, Cone R, Haas JE, Gown AM: Diagnosis of rhabdomyosarcomas with HHF35, a monoclonal antibody directed against muscle actins. Am J Pathol 131:19–28, 1988

    PubMed  CAS  Google Scholar 

  51. Mukai M, Iri H, Torikata C, Kageyama K, Morikawa Y, Shimizu K: Immunoperoxidase demonstration of a new muscle protein (Z-protein) in myogenic tumors as a diagnostic aid. Am J Pathol 114:164–170, 1984

    PubMed  CAS  Google Scholar 

  52. Osborn M, Hill C, Altmannsberger M, Weber K: Monoclonal antibodies to titin in conjunction with antibodies to desmin separate rhabdomyosarcomas from other tumor types. Lab Invest 55:101–108, 1986

    PubMed  CAS  Google Scholar 

  53. Variend S, Loughlin MA: An evaluation of enzyme histochemistry in the diagnosis of childhood rhabdomyosarcoma. Histopathology 9:389–400, 1985

    PubMed  CAS  Google Scholar 

  54. Staal GEJ, Rijksen G, van Oirschot BA, Roholl PJM: Characterization of pyruvate kinase from human rhabdomyosarcoma in relation to immunohistochemical and morphological criteria. Cancer 63:479–483, 1989

    PubMed  CAS  Google Scholar 

  55. Wold LE, Li C-Y, Homburger HA: Localization of the B and M polypeptide subunits of creatine kinase in normal and neoplastic human tissues by an immunoperoxidase technic. Am J Clin Pathol 75:327–332, 1981

    PubMed  CAS  Google Scholar 

  56. de Jong ASH, van Kessel-van Vark M, Albus Lutter CE, Voute PA: Creatine kinase subunits M and B as markers in the diagnosis of poorly differentiated rhabdomyosarcomas in children. Hum Pathol 16:924–928, 1985

    PubMed  Google Scholar 

  57. Osborn M, Geisler N, Shaw G, Sharp G, Weber K: Intermediate filaments. Cold Spring Harbor Symp Quant Biol 46:413–429, 1982

    PubMed  Google Scholar 

  58. Osborn M, Weber K: Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48:372–394, 1983

    PubMed  CAS  Google Scholar 

  59. Gabbiani G, Kapanci Y, Barazzone P, Franke WW: Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist. Am J Pathol 104:206–216, 1981

    PubMed  CAS  Google Scholar 

  60. Denk H, Krepier R, Artlieb U, et al: Proteins of intermediate filaments. An immunohistochemical and biochemical approach to the classification of soft tissue tumors. Am J Pathol 110:193–208, 1983

    PubMed  CAS  Google Scholar 

  61. Altmannsberger M, Osborn M, Treuner J, Holscher A, Weber K, Schauer A: Diagnosis of human childhood rhabdomyosarcoma by antibodies to desmin, the structural protein of muscle specific intermediate filaments. Virchows Arch [Cell Pathol] 39:203–215, 1982

    CAS  Google Scholar 

  62. Miettinen M, Lehto V-P, Badley RA, Virtanen I: Expression of intermediate filaments in soft-tissue sarcomas. Int J Cancer 30:541–546, 1982

    PubMed  CAS  Google Scholar 

  63. Miettinen M, Lehto V-P, Badley RA, Virtanen I: Alveolar rhabdomyosarcoma. Demonstration of the muscle type of intermediate filament protein, desmin, as a diagnostic aid. Am J Pathol 108:246–251, 1982

    PubMed  CAS  Google Scholar 

  64. Altmannsberger M, Weber K, Droste R, Osborn M: Desmin is a specific marker for rhabdomyosarcomas of human and rat origin. Am J Pathol 118:85–95, 1985

    PubMed  CAS  Google Scholar 

  65. Dias P, Kumar P, Marsden HB, et al: Evaluation of desmin as a diagnostic and prognostic marker of childhood rhabdomyosarcomas and embryonal sarcomas. Br J Cancer 56:361–365, 1987

    PubMed  CAS  Google Scholar 

  66. Molenaar WM, Oosterhuis JW, Oosterhuis AM, Ramaekers FCS: Mesenchymal and muscle-specific intermediate filaments (vimentin and desmin) in relation to differentiation in childhood rhabdomyosarcomas. Hum Pathol 16:838–843, 1985

    PubMed  CAS  Google Scholar 

  67. Gould VE: The coexpression of distinct classes of intermediate filaments in human neoplasms. Arch Pathol Lab Med 109:984–985, 1985

    PubMed  CAS  Google Scholar 

  68. Damjanov I: Antibodies to intermediate filaments and histogenesis (editorial). Lab Invest 47:215–217, 1982

    PubMed  CAS  Google Scholar 

  69. Azumi N, Battifora H: The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms. A comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 88:286–296, 1987

    PubMed  CAS  Google Scholar 

  70. Coggi G, Dell’Orto P, Braidotti P, Coggi A, Viale G: Coexpression of intermediate filaments in normal and neoplastic human tissues: A reappraisal. Ultrastruct Pathol 13:501–514, 1989

    PubMed  CAS  Google Scholar 

  71. Miettinen M, Rapola J: Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyo-sarcoma-like tumors. Expression of cytokeratin and the 68-kD neurofilament protein. Am J Surg Pathol 13:120–132, 1989

    PubMed  CAS  Google Scholar 

  72. Tsokos M, Linnoila RI, Chandra RS, Triche TJ: Neuron-specific enolase in the diagnosis of neuroblastoma and other small, round-cell tumors in children. Hum Pathol 15:575–584, 1984

    PubMed  CAS  Google Scholar 

  73. Carter RL, Al-Sam SZ, Corbett RP, Clinton S: A comparative study of immunohistochemical staining for neuron-specific enolase, protein gene product 9.5 and S-100 protein in neuroblastoma, Ewing’s sarcoma and other round cell tumours in children. Histopathology 16:461–467, 1990

    PubMed  CAS  Google Scholar 

  74. Cordell JL, Falini B, Erber WN, et al: Immunoen-zymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229, 1984

    PubMed  CAS  Google Scholar 

  75. Patton RB, Horn RC: Rhabdomyosarcoma: Clinical and pathological faetures and comparison with human fetal and embryonal skeletal muscle. Surgery 52:572–584, 1962

    PubMed  CAS  Google Scholar 

  76. Bignami A, Dahl D: Early appearance of desmin, the muscle-type intermediate filament protein, in the rat embryo. J Histochem Cytochem 32:473–476, 1984

    PubMed  CAS  Google Scholar 

  77. van Muijen GNP, Ruiter DJ, Warnaar SO: Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest 57:359–369, 1987

    PubMed  Google Scholar 

  78. Kagen LJ, Christian CL: Immunologic measurements of myoglobin in human adult and fetal skeletal muscle. Am J Physiol 211:656–660, 1966

    PubMed  CAS  Google Scholar 

  79. Gauthier GF, Lowey S, Hobbs AW: Fast and slow myosin in developing muscle fibers. Nature 274:25–29, 1978

    PubMed  CAS  Google Scholar 

  80. Rubinstein NA, Holtzer H: Fast and slow muscles in tissue culture synthesise only fast myosin. Nature 280:323–325, 1979

    PubMed  CAS  Google Scholar 

  81. Granger BL, Lazarides E: Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18:1053–1063, 1979

    PubMed  CAS  Google Scholar 

  82. Bennett GS, Fellini SA, Toyama Y, Holtzer H: Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J Cell Biol 82:577–584, 1979

    PubMed  CAS  Google Scholar 

  83. Gard DL, Lazarides E: The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell 19:263–275, 1980

    PubMed  CAS  Google Scholar 

  84. Tokuyasu KT, Mäher PA, Singer SJ: Distributions of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study. J Cell Biol 98:1961–1972, 1984

    PubMed  CAS  Google Scholar 

  85. Tokuyasu KT, Mäher PA, Singer SJ: Distributions of vimentin and desmin in developing chick myotubes in vivo. II. Immunoelectron microscopic study. J Cell Biol 100:1157–1166, 1985

    PubMed  CAS  Google Scholar 

  86. Trent JM, Meltzer PS, Thompson FH, Casper JT, Fogh JE: Nonrandom chromosome alterations in rhabdomyosarcoma (RMS): Possible association with a RAS-related oncogene. Proc Annu Meet Am Assoc Cancer Res 25:66, 1984

    Google Scholar 

  87. Garvin AJ, Stanley WS, Bennett DD, Sullivan JL, Sens DA: The in vitro growth, heterotransplantation and differentiation of a human rhabdomyosarcoma cell line. Am J Pathol 125:208–217, 1986

    PubMed  CAS  Google Scholar 

  88. Douglass EC, Valentine M, Etcubanas E, et al: A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet 45:148–155, 1987

    PubMed  CAS  Google Scholar 

  89. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavanee WK: Loss of heterozygosity in 3 embryonal tumors suggests a common pathogenetic mechanism. Nature 316:330–334, 1985

    PubMed  CAS  Google Scholar 

  90. Scrable HJ, Witte DP, Lampkin BC, Cavanee WK: Chromosomal localisation of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329:645–647, 1987

    PubMed  CAS  Google Scholar 

  91. Henry I, Grandjouan S, Couillin P, et al: Tumor-specific loss of 1 lp 15.5 alleles in del 1 lpl3 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sei USA 86:3247–3251, 1989

    CAS  Google Scholar 

  92. Gessler M, Poustka A, Cavanee W, Neve RL, Orkin SH, Bruns GAP: Homozygous deletion in Wilms tumors of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778, 1989

    Google Scholar 

  93. Kouzarides T, Ziff E: Behind the FOS and JUN leucine zipper. Cancer Cells 1:71–75, 1989

    PubMed  CAS  Google Scholar 

  94. Garson JA, Clayton J, Mclntyre P, Kemshead JT: N-MYC oncogene amplification in rhabdomyosarcoma at release. Lancet 1:1496, 1986

    PubMed  CAS  Google Scholar 

  95. Mitani K, Kurosawa H, Suzuki A, et al: Amplification of N-MYC in a rhabdomyosarcoma. Jpn J Cancer Res 77:1062–1065, 1986

    PubMed  CAS  Google Scholar 

  96. Tsuda H, Shimosato Y, Upton MP, et al: Retrospective study on amplification of N-MYC and C-MYC genes in paediatric solid tumors and its association with prognosis and tumor differentiation. Lab Invest 59:321–327, 1988

    PubMed  CAS  Google Scholar 

  97. Rosson D, Tereba A: Transforming N-RAS genes have been identified in 3 childhood rhabdomyosarcomas and 1 Wilms’ tumor. Proc Annu Meet Am Assoc Cancer Res 25:71, 1984

    Google Scholar 

  98. Chardin P, Yeramian P, Madaule P, Tavitian A: N-Ras activation in the RD human rhabdomyosarcoma cell line. Int J Cancer 35:647–652, 1985

    PubMed  CAS  Google Scholar 

  99. Stratton MR, Fisher C, Gusterson BA, Cooper CS: Detection of point mutations in N-RAS and K-RAS genes of human embryonal rhabdomyosarcoma using oligonucleotide probes and PCR. Cancer Res 49:6324–6327, 1989

    PubMed  CAS  Google Scholar 

  100. Rosen N, Bolen JB, Schwartz AM, Cohen P, De-Seau V, Israel MA: Analysis of pp60 (c-SRC) protein kinase activity in human tumor cell lines and tissues. J Biol Chem 261:13754–13759, 1986

    PubMed  CAS  Google Scholar 

  101. Comoglio PM, Naldini L, Renzo FD, Cirillo D, Giordano S: Phosphotyrosine antibodies: a probe for class 1 oncogene products expressed in human malignancies (Meeting abstract). Biotech RIA 86. International symposium on monoclonals and DNA probes in diagnostic and preventive medicine. April 8–10, 1986, Florence, Italy, 38, 1986

    Google Scholar 

  102. Stratton MR, Williams S, Fisher C, et al: Structuralalterations of the RB-1 gene in human soft tissue tumors. Br J Cancer 60:202–205, 1989

    PubMed  CAS  Google Scholar 

  103. Schweigerer L, Neufeld G, Mergia A, Abraham JA, Fiddes JC, Gospodarowicz D: Basic fibroblast growth factor in human rhabdomyosarcoma cells: Implications for the proliferation and neovasculari-sation of myoblast-derived tumors. Proc Natl Acad Sei USA 84:842–846, 1987

    CAS  Google Scholar 

  104. Chan HS, Thorner P, Haddad G, Gallie BL: Immu-nohistochemically identified P-glycoprotein correlates with adverse outcome in childhood soft tissue sarcoma. Proc Annu Meet Am Assoc Cancer Res 30:A2028, 1989

    Google Scholar 

  105. Goldstein L, Galski H, Fojo A, et al: Expression of a multidrug-resistance gene in human tumors. Proc Annu Meet Am Assoc Cancer Res 29: A1184, 1988

    Google Scholar 

  106. Scrable H, Witte D, Shimada H, et al: The molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1:23–35, 1989

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carter, R.L., McCarthy, K.P. (1992). Diagnosis of Rhabdomyosarcomas with Particular Reference to Immunohistochemical Markers. In: Fenoglio-Preiser, C.M., Wolff, M., Rilke, F. (eds) Progress in Surgical Pathology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09515-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09515-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09517-1

  • Online ISBN: 978-3-662-09515-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics