Atomistic Simulation of Si3N4 CVD from Dichlorosilane and NH3

  • A. A. Bagatur’yants
  • A. K. Minushev
  • K. P. Novoselov
  • A. A. Safonov
  • S. Ya. Umanskii
  • A. S. Vladimirov
  • A. Korkin
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)


We describe an integrated approach to the atomistic simulation of CVD processes, using as an example the case of silicon nitride Chemical Vapor Deposition (CVD) from a gas-phase mixture of SiH2Cl2 and NH3. The mechanisms and kinetics of gas-phase reactions and the mechanism of Si3N4 film growth were studied theoretically based on ab initio calculations of potential energy surfaces and surface structures. The transition state (TST) and Rice—Ramsperger—Kassel—Marcus (RRKM) theories were used for calculations of the corresponding rate constants. A kinetic reaction scheme and the corresponding chemical mechanism were proposed that predicted the gas-phase composition in a wide temperature—pressure range. A detailed mechanism was also proposed for surface processes of film growth. Finally, a kinetic Monte Carlo scheme was applied to the CVD growth of Si3N4 films from dichlorosilane and ammonia. The results of the simulations agree well with the available experimental data. We conclude that the Monte Carlo approach is very promising for the predictive simulation of CVD film growth processes, including prediction of the structural properties of the resulting film.


Partition Function Chemical Vapor Deposition Silicon Nitride Film Growth Atomistic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.D. Davides and L.I. Maissel, J. Appl. Phys., 37 (1966) 574.CrossRefGoogle Scholar
  2. 2.
    W.A. Pliskin, Thin Solid Films, 2 (1968) 1.CrossRefGoogle Scholar
  3. 3.
    A. Lekhollm, J. Electrochem. Soc., 119 (1972) 1122.Google Scholar
  4. 4.
    K.H. Jack and W.I. Wilson, Natural Phys. Sci., 238 (1972) 28.Google Scholar
  5. 5.
    R.S. Rosier, Solid State Technol. 20 (1977) 63.CrossRefGoogle Scholar
  6. 6.
    R.N. Katz, Science, 208 (1980) 841.CrossRefGoogle Scholar
  7. 7.
    C.-E. Morosanu, Thin Solid Films, 65 (1980) 171.CrossRefGoogle Scholar
  8. 8.
    C.-E. Morosanu and E. Segal, Mater. Chem., 7 (1982) 79.CrossRefGoogle Scholar
  9. 9.
    K.F. Roenigk and K. F. Jensen, J. Electrochem. Soc., 134 (1987) 1777.Google Scholar
  10. 10.
    G. Peev, L. Zambov and Y. Yanakiev, Thin Solid Films, 189 (1990) 275.CrossRefGoogle Scholar
  11. 11.
    T. Sorita, T. Satake, H. Adachi, T. Ogata, and K. Kobayashi, J. Electrochem. Soc., 141 (1994) 3505.CrossRefGoogle Scholar
  12. 12.
    T. Ogata, T. Sorita, K. Kobayashi, Y. Matsui, K. Horie, and M. Hirayama, Jpn. J. Appl. Phys., 35 (1996) 1690.Google Scholar
  13. 13.
    Y. Kusakabe, K. Hanaoka, H. Komori, H. Ohnishi, and K. Yamanishi, Jpn. J. Appl. Phys., 36 (1997) 6.CrossRefGoogle Scholar
  14. 14.
    S. Ishidzuka, Y. Igari, T. Takaoka, and I. Kusunoki, Appl. Surf. Sci., 130–132 (1998) 107.CrossRefGoogle Scholar
  15. 15.
    S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci., 130, 132 (1998) 352.CrossRefGoogle Scholar
  16. 16.
    J.W. Klaus, A.W. Ott, A.C. Dillon, and S.M. George, Surf. Sci., 418 (1998) L14.CrossRefGoogle Scholar
  17. 17.
    S. Koseki and A. Ishitani, J. Appl. Phys., 72 (1992) 5808.CrossRefGoogle Scholar
  18. 18.
    S. Koseki and A. Ishitani, Bull. Chem. Soc. Jpn., 65 (1992) 3174.CrossRefGoogle Scholar
  19. 19.
    S. Koseki, A. Ishitani, and Y. Fujimura, Jpn. J. Appl. Phys., 36 (1997) 6518.CrossRefGoogle Scholar
  20. 20.
    A.A. Korkin, J.V. Cole, D. Sengupta, and J.B. Adams, J. Electrochem. Soc., 16 (1999) 4203.CrossRefGoogle Scholar
  21. 21.
    M.-D. Su and H.B. Schlegel, J. Phys. Chem., 97 (1993) 9981.CrossRefGoogle Scholar
  22. 22.
    J.M. Wittbrodt and H.B. Schlegel, Chem. Phys. Lett., 265 (1997) 527.CrossRefGoogle Scholar
  23. 23.
    M.T. Swihart and R.W. Carr, J. Phys. Chem. A, 101 (1997) 7434.CrossRefGoogle Scholar
  24. 24.
    M.T. Swihart and R.W. Carr, J. Phys. Chem. A, 102 (1998) 785.CrossRefGoogle Scholar
  25. 25.
    M.T. Swihart and R.W. Carr, J. Phys. Chem. A, 102 (1998) 1542.Google Scholar
  26. 26.
    K.F. Jensen, H. Simka, T.G. Mihopoulos, P. Futerko, and M. Hierlemann, in Proceedings of the NATO Advanced Study Institute on Advances in Rapid Thermal and Integrated Processing, Acquafredda di Maratea, Italy, July 3–14, 1995, F. Roozeboom (ed.), Dordrecht (The Netherlands): Kluwer, 1996.Google Scholar
  27. 27.
    M.D. Allendorf and C.F. Melius, Surface and Coatings Technology, 108, 109 (1998) 191.CrossRefGoogle Scholar
  28. 28.
    S.T. Rodgers and K.F. Jensen, J. Appl. Phys., 83 (1998) 524.CrossRefGoogle Scholar
  29. 29.
    T.P. Merchant, M.K. Gobbert, T.S. Cale, and L.J. Borucki, Thin Solid Films, 365 (2000) 368.CrossRefGoogle Scholar
  30. 30.
    H.N.G. Wadley, X. Zhou, R.A. Johnson, and M. Neurock, Prog. Mater. Sci., 46 (2001) 329.CrossRefGoogle Scholar
  31. 31.
    G. Valente, C. Cavallotti, M. Masi, and S. Carr, J. Cryst. Growth, 230 (2001) 247.CrossRefGoogle Scholar
  32. 32.
    A.A. Bagatur’yants, K.P. Novoselov, A.A. Safonov, L.L. Savchenko, J.V. Cole, and A.A. Korkin, Mater. Sci. Semicond. Process., 3 (2000) 23.CrossRefGoogle Scholar
  33. 33.
    A.A. Bagatur’yants, K.P. Novoselov, A.A. Safonov, A.Kh. Minushev, A.S. Vladimirov, J.V. Cole, and A.A. Korkin, unpublished.Google Scholar
  34. 34.
    P.J. Robinson and K.A. Holbrook, Unimolecular reactions, London: Wiley-Interscience, 1972.Google Scholar
  35. 35.
    H. Eyring, S.H. Lin, and S.M. Lin, Basic chemical kinetics, Wiley Interscience, New York, 1980.Google Scholar
  36. 36.
    R.G. Gilbert and S.C. Smith, Theory of unimolecular and recombination reactions, Blackwell Scientific, Oxford, 1990Google Scholar
  37. 37.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, J. Comput. Chem., 14 (1993) 1347.Google Scholar
  38. 38.
    C. Moller, M.S. Plesset, Phys. Rev., 46 (1934) 618.CrossRefGoogle Scholar
  39. 39.
    A.D. McLean and G.S. Chandler, J. Chem. Phys., 72 (1980) 5639.CrossRefGoogle Scholar
  40. 40.
    H. Simka, B.G. Willis, I. Lengyel, and K.F. Jensen, in Progress in Crystal Growth and Characterization of Materials, (1997), vol. 35 (24) 117.CrossRefGoogle Scholar
  41. 41.
    B.G. Willis and K.F. Jensen, J. Phys. Chem., 102 (1998) 2613.Google Scholar
  42. 42.
    C. Kleijn, Transport phenomena in chemical vapor deposition reactors“, TU Delft, the Netherlands (1991).Google Scholar
  43. 43.
    Press W.H., Vetterling W.T., Teukolsky S.A., Flannery B.P. Numerical recipes in C, Cambridge University Press (1992).Google Scholar
  44. 44.
    Rabitz, H., Kramer, M., and Dacol, D. Sensitivity Analysis in Chemical Kinetics, Ann. Rev. Phys. Chem., 34 (1983) 419.CrossRefGoogle Scholar
  45. 45.
    Dickinson, R.P., Gelinas, R.J. J. Comp. Phys., 21 (1976) 123.Google Scholar
  46. 46.
    L.A. Curtiss, K. Raghavachari, G.W. Trucks, and J.A. Pople, J. Chem. Phys., 94 (1991) 7221.CrossRefGoogle Scholar
  47. 47.
    R.L. Jenkins, A.J. Vanderwielen, S.P. Ruis, S.R. Gird, and M.A. Ring, Inorg. Chem., 12 (1973) 2968.Google Scholar
  48. 48.
    R.E. Weston, Jr. and H.A. Schwarz, Chemical kinetics, NJ: Prentice-Hall, Englewood Cliffs (1972) p. 101.Google Scholar
  49. 49.
    E.W. Schlag and G.L. Haller, J. Chem. Phys., 42 (1965) 584.CrossRefGoogle Scholar
  50. 50.
    K. Kato, Z. Inoue, K. Kijima, I. Kawada, and H. Tanaka, J. Am. Ceram. Soc., 58 (1975) 90.CrossRefGoogle Scholar
  51. 51.
    R. Grun, Acta Cryst. B, 35 (1979) 800.CrossRefGoogle Scholar
  52. 52.
    W.Y. Lee, J.R. Strife, and R.D. Veltri, J. Am. Ceram. Soc., 75 (1992) 2803.Google Scholar
  53. 53.
    P. Yang, H.-K. Fun, I. A. Rahman, and M.I. Saleh, Ceram. Int., 21 (1995) 137.CrossRefGoogle Scholar
  54. 54.
    C.M. Wang, X.Q. Pan, M. Ruhle, F.L. Riley, and M. Mitomo, J. Mater. Sci., 31 (1996) 5281.CrossRefGoogle Scholar
  55. 55.
    H. Toraya, J. Appl. Cryst., 33 (2000) 95.CrossRefGoogle Scholar
  56. 56.
    F. Bozso and Ph. Avouris, Phys. Rev. Lett., 57 (1986) 1185.Google Scholar
  57. 57.
    R. Wolkow and Ph. Avouris, Phys. Rev. Lett., 60 (1988) 1049.Google Scholar
  58. 58.
    Ph. Avouris and R. Wolkow, Phys. Rev. B 39 (1989) 5091.CrossRefGoogle Scholar
  59. 59.
    L. Kubler, J.L. Bischoff, and D. Bolmont, Phys. Rev. B 38 (1988) 13113.CrossRefGoogle Scholar
  60. 60.
    G. Rangelov, J. Stober, B. Eisenhurt, and Th. Fauster, Phys. Rev. B 44 (1991) 1954.Google Scholar
  61. 61.
    S. Ishidzuka, Y. Igari, T. Takaoka, and I. Kusunoki, Appl. Surf. Sci., 130, 132 (1998)107.Google Scholar
  62. 62.
    T. Watanabe, A. Ichikawa, M. Sakuraba, T. Matsuura, and J. Murota, J. Electrochem. Soc., 145 (1998) 4252.CrossRefGoogle Scholar
  63. 63.
    M. Bjorkqvist, M. Gothelid, T.M. Grehk, and U.O. Karlsson, Phys. Rev. B 57 (1998) 2327.Google Scholar
  64. 64.
    X. Wang, G. Zhai, J. Yang, and N. Cue, Phys. Rev. B 60 (1999) R2146.CrossRefGoogle Scholar
  65. 65.
    G. Zhai, J. Yang, N. Cue, and X. Wang, Thin Solid Films, 366 (2000) 121.CrossRefGoogle Scholar
  66. 66.
    S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci., 130, 132 (1998) 352.CrossRefGoogle Scholar
  67. 67.
    J.W. Klaus, A.W. Ott, A.C. Dillon, and S.M. George, Surf. Sci., 418 (1998) L14.CrossRefGoogle Scholar
  68. 68.
    Y. Widjaja, M.M. Mysinger, and C.B. Musgrave, J. Phys. Chem. B 104 (2000) 2527.Google Scholar
  69. 69.
    J.A. Wendal and W.A. Goddard III, J. Chem. Phys., 97 (1992) 5048.CrossRefGoogle Scholar
  70. 70.
    P. Vashishta, R.K. Kalia, and I. Ebbsjö, Phys. Rev. Lett., 75 (1995) 858.CrossRefGoogle Scholar
  71. 71.
    C.-K. Loong, P. Vashishta, R.K. Kalia, and I. Ebbsjö, Europhys. Lett., 31 (1995) 201.CrossRefGoogle Scholar
  72. 72.
    W.-Y. Ching, Y.-N. Xu, J.D. Gale, and M. Rühle, J. Am. Ceram. Soc., 81 (1998) 3189.CrossRefGoogle Scholar
  73. F. de Brito Mota, J.F. Justo, and A. Fazzio, Int. J. Quant. Chem., 70 (1998) 973.Google Scholar
  74. 74.
    F. de Brito Mota, J.F. Justo, and A. Fazzio, Phys. Rev. B 58 (1998) 8323.CrossRefGoogle Scholar
  75. 75.
    R.K. Kalia, A. Nakano, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett., 78 (1997) 689.CrossRefGoogle Scholar
  76. 76.
    M.E. Bachlechner, R.K. Kalia, A. Nakano, A. Omeltchenko, P. Vashishta, I. Ebbsjö, A. Madhukar, and G.-L. Zhao, J. Eur. Ceram. Soc., 19 (1999) 2265.Google Scholar
  77. 77.
    A. Omeltchenko, M.E. Bachlechner, A. Nakano, R.K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, and P. Messina, Phys. Rev. Lett., 84 (2000) 318.CrossRefGoogle Scholar
  78. 78.
    M.E. Bachlechner, A. Omeltchenko, A. Nakano, R.K. Kalia, P. Vashishta, I. Ebbsjö, and A. Madhukar, Phys. Rev. Lett., 84 (2000) 322.CrossRefGoogle Scholar
  79. 79.
    X.Y. Guo and P. Brault, Surf. Sci., 488 (2001) 133.CrossRefGoogle Scholar
  80. 80.
    A.Y. Liu and M.L. Cohen, Phys. Rev. B 41 (1990) 10727.CrossRefGoogle Scholar
  81. 81.
    Y.-N. Xu and W.Y. Ching, Phys. Rev. B 51 (1995) 17379.CrossRefGoogle Scholar
  82. 82.
    A. Reyes-Serrato, D.H. Galvan, and I.L. Garzon, Phys. Rev. B 52 (1995) 6293.CrossRefGoogle Scholar
  83. 83.
    G.L. Zhao and M.E. Bachlechner, Phys. Rev. B 58 (1998) 1887.Google Scholar
  84. 84.
    G. Pacchioni and D. Erbetta, Phys. Rev. B 60 (1999) 12617.CrossRefGoogle Scholar
  85. 85.
    W.Y. Ching, L. Ouyang, and J.D. Gale, Phys. Rev. B 61 (2000) 8696.CrossRefGoogle Scholar
  86. 86.
    A.A. Bagatur’yants, K.P. Novoselov, A.A. Safonov, J.V. Cole, M. Stoker, and A.A. Korkin, Surf. Sci. 486 (2001) 213.CrossRefGoogle Scholar
  87. 87.
    M.J. Frisch et al., Gaussian 98, Revision A. 7, ( Gaussian, Inc., Pittsburgh PA, 1998 ).Google Scholar
  88. 88.
    D.J. Doren, in: Advances in Chemical Physics, Eds. I. Progogine and S.A. Rice, NU: Wiley (1996) 1.Google Scholar
  89. 89.
    N. Wiberg, K. Schurz, G. Reber, and G. Muller, Chem. Commun. (1986) 591.Google Scholar
  90. 90.
    G. Reber, J. Riede, N. Wiberg, K. Schurz, and G. Muller, Z. Naturforsch., B: Chem. Sci., 44 (1989) 786.Google Scholar
  91. 91.
    J. Niesmann, U. Klingebiel, M. Schafer, and R. Boese, Organometallics, 17 (1998) 947.CrossRefGoogle Scholar
  92. 92.
    Levine S.W., Engstrom J.R., Clancy P., Surf. Sci., 401 (1998) 1998Google Scholar
  93. 93.
    C.C. Battaile, D.J. Srolovitz, and J.E. Butler, J. Appl. Phys., 82 (1997) 629.CrossRefGoogle Scholar
  94. 94.
    Battaile C.C., Srolovitz D.J., Butler J.E., J. Cryst. Growth, 194 (1998) 1998.Google Scholar
  95. 95.
    A.A. Knizhnik, A.A. Bagaturyants, I.V. Belov, B. V. Potapkin, and A.A. Korkin, Proc. EMRS 2001 Spring Meeting.Google Scholar
  96. 96.
    Gonzalez-Lafont A., Truong T.N., and Truhlar D.G., J. Chem. Phys., 95 (1991) 8875.CrossRefGoogle Scholar
  97. 97.
    Pitt I.G., Gilbert R.G., Ryan K.R., J. Chem. Phys., 102 (1995) 3461.CrossRefGoogle Scholar
  98. 98.
    Mills G., Jonsson H., Shenter G.K., Surf. Sci., 324 (1995) 305.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. A. Bagatur’yants
  • A. K. Minushev
  • K. P. Novoselov
  • A. A. Safonov
  • S. Ya. Umanskii
  • A. S. Vladimirov
  • A. Korkin

There are no affiliations available

Personalised recommendations