Atomistic Simulations in Materials Processing

  • M. Jaraiz
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)


The traditional continuum approach, based on solving partial differential equations (PDEs), cannot simultaneously handle the increasingly high number of different phenomena that take place during deep sub-micron device fabrication. Although ab initio calculations can provide a parameter-free description of small atomic structures and classical molecular dynamics (MD) can be used to assess the behavior of extended defects, the time scale that can be reached by these techniques (nanoseconds) precludes their direct use in materials processing simulators. In this chapter, we show that the Kinetic Monte Carlo (KMC) technique is particularly apt to fill in the gap between the continuum and truly atomistic simulations. KMC is capable of taking the fundamental knowledge database obtained from ab initio/MD calculations up to the space and time scales involved in typical silicon IC processing conditions. After reviewing experimental and theoretical knowledge about diffusion and defects in Si, we introduce the fundamentals of a particular KMC scheme for the simulation of point and extended defects. We describe the operation and different components of a specific implementation of this scheme. Finally, we give examples to illustrate some of the capabilities of this approach.


Point Defect Dislocation Loop Atomistic Simulation Extended Defect Kinetic Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DADOS (Diffusion and Defects, Object-oriented Simulator); M. Jaraiz, L. Pelaz, E. Rubio, J. Barbolla, G. H. Gilmer, D. J. Eaglesham, H. J. Gossmann, and J. M. Poate, Mat. Res. Soc. Symp. Proc. 532 (1998) 43.Google Scholar
  2. 2.
    P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61 (1989) 289.CrossRefGoogle Scholar
  3. 3.
    S. M. Hu, Mater. Sci. Eng. R13 (1994) 105.Google Scholar
  4. 4.
    H. Bracht, Mat. Res. Soc. Bulletin, June (2000) 22.Google Scholar
  5. 5.
    J. Dabrowski, in Special Defects in Semiconducting Materials, edited by R. P. Agarwala, Trans Tech Publications, Zurich 2000, pages 23 - 50.Google Scholar
  6. 6.
    G. D. Watkins, J. R. Troxell, and A. P. Chatterjee, in Inst. Phys. Conf. Ser. 46 (1979) 16.Google Scholar
  7. 7.
    A. Seeger and K. P. Cheek, Phys. Status Solidi 29 (1968) 455.CrossRefGoogle Scholar
  8. 8.
    H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81 (1998) 393CrossRefGoogle Scholar
  9. 9.
    T. Y. Tan and U. Gösele, Appl. Phys. A: Solids Surf. 37 (1985) 1.CrossRefGoogle Scholar
  10. 10.
    M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev. B 55 (1997) 14279.CrossRefGoogle Scholar
  11. 11.
    R. A. Casali, H. Rucker, and M. Methfessel, Appl. Phys. Lett. 78 (2001) 913.CrossRefGoogle Scholar
  12. 12.
    S. Dannefaer, P. Masher, and D. Kerr, Phys. Rev. Lett. 56 (1986) 2195.Google Scholar
  13. 13.
    P. E. Blöchl, E. Smargiassi, R. Car, D. B. Lacks, W. Andreoni, and S. Pantelides, Phys. Rev. Lett. 70 (1993) 2435.Google Scholar
  14. 14.
    H. Zimmermann and H. Ryssel, Appl. Phys. A: Solids Surf. 55 (1992) 121.CrossRefGoogle Scholar
  15. 15.
    H. Bracht, N. A. Stolwijk, and H. Mehrer, Phys. Rev. B, 52 (1995) 16542.CrossRefGoogle Scholar
  16. 16.
    T. K. Mogi, M. O. Thomson, H.-J. Gossmann, J. M. Poate, and H. S. Luftman, Appl. Phys. Lett, 69 (1996) 1273.Google Scholar
  17. 17.
    A. Arai and S. Takeda, Phys. Rev. Lett. 78 (1997) 4265.CrossRefGoogle Scholar
  18. 18.
    M. P. Chichkine, M. M. De Souza, and E. M. Sankara Narayanan, Phys. Rev. Lett. 88 (2002) 085501.Google Scholar
  19. 19.
    N.E.B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom. H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, and M. Jaraiz, Phys. Rev. Lett. 82, (1999) 4460.CrossRefGoogle Scholar
  20. 20.
    D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 65 (1994) 2305.Google Scholar
  21. 21.
    S. Takeda, Jpn. J. Appl. Phys. 30 (1991) L639.Google Scholar
  22. 22.
    M. Kohyama and S. Takeda, Phys. Rev. B 46 (1992) 12305; M. Kohyama and S. Takeda, Phys. Rev. B 51 (1995) 13111.CrossRefGoogle Scholar
  23. 23.
    J. Kim, J.W. Wilkins, F.S. Khan, and A. Canning, Phys. Rev. B 55 (1997) 16186.CrossRefGoogle Scholar
  24. 24.
    P. Alippi and L. Colombo, Phys. Rev. B 62 (2000) 1815.Google Scholar
  25. 25.
    F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L. F. Giles, and N. E. B. Cowern, J. Appl. Phys., 87 (2000) 8420.CrossRefGoogle Scholar
  26. 26.
    B. de Mauduit, L. Laanab, C. Bergaud, M. M. Faye, A. Martinez, and A. Claverie, Nuc. Instrum. Methods Res. B 84 (1994) 190.Google Scholar
  27. 27.
    B. Colombeau, F. Cristiano, A. Altibelli, C. Bonafos, G. Ben Assayag, and A. Claverie, Appl. Phys. Lett. 78 (2001) 940.CrossRefGoogle Scholar
  28. 28.
    G. D. Watkins, in Deep Centers in Semiconductors, 2nd ed., edited by S. T. Pantelides, Gordon and Breach, Switzerland,1992, Chap. 3.Google Scholar
  29. 29.
    G. D. Watkins and J W. Corbett, Phys. Rev. 138 (1965) A543.CrossRefGoogle Scholar
  30. 30.
    Y. H. Lee and J. W. Corbett, Phys. Rev. B 9 (1974) 4351.CrossRefGoogle Scholar
  31. 31.
    B. Hourahine, R. Jones, A. N. Safonov, S. Oberg, P. R. Briddon, and S. K. Estreicher, Phys. Rev. B 61 (2000) 12594.CrossRefGoogle Scholar
  32. 32.
    D. J. Chadi and K. J. Chang, Phys. Rev. B 38 (1988) 1523.Google Scholar
  33. 33.
    S. K. Estreicher et al., Appl. Phys. Lett. 70 (1997) 432.CrossRefGoogle Scholar
  34. 34.
    O. W. Holland and C. W. White, Nucl. Instr. Meth. B 59/60 (1991) 353.Google Scholar
  35. 35.
    R. Falster and V. V. Voronkov, Mat. Res. Soc. Bulletin, June (2000) 28.Google Scholar
  36. 36.
    T. Ueki, M. Itsumi, and T. Takeda, Appl. Phys. Lett. 70 (1997) 1248.Google Scholar
  37. 37.
    A. Bogiorno and L. Colombo, Phys. Rev. B 57 (1998) 8767.CrossRefGoogle Scholar
  38. 38.
    T. Diaz de la Rubia and G.H. Gilmer, Phys. Rev. Lett. 74 (1995) 2507.Google Scholar
  39. 39.
    A. F. Voter, Phys. Rev. Lett. 78 (1997) 3908.CrossRefGoogle Scholar
  40. 40.
    M. E. Law, G. H. Gilmer, and M. Jaraiz, Mat. Res. Soc. Bulletin, June (2000) 45.Google Scholar
  41. 41.
    L. A. Marques, L.Pelaz, J. Hernandez, J. Barbolla, and G. H. Gilmer, Phys. Rev. B 64 (2001) 045214Google Scholar
  42. 42.
    P. J. Schultz, C. Jagadish, M. C. Ridgway, R. G. Elliman, and J. S. Williams, Phys. Rev. B 44 (1991) 9118.Google Scholar
  43. 43.
    R. G. Elliman, J. Linnros, and W. L. Brown, Mat. Res. Soc. Symp. Proc., 100 (1988) 363.CrossRefGoogle Scholar
  44. 44.
    O. W. Holland, L. Xie, B. Nielsen, and D. S. Zhou, J. Electronics Mat., 25 (1996) 99.CrossRefGoogle Scholar
  45. 45.
    S. Roorda and W. C. Sinke, Appl. Surf. Sci. 36 (1989) 588.CrossRefGoogle Scholar
  46. 46.
    D. R. Lim, C.S. Rafferty, and F. P. Klemens, Appl. Phys. Lett. 67 (1995) 2302.Google Scholar
  47. 47.
    D. Skarlatos, M. Omri, A. Claverie, and D. Tsoukalas, J. Electrochem. Soc. 146 (1999) 2276.Google Scholar
  48. 48.
    S. M. Hu, in Defects in semiconductors, ed. by J. Narayan and T. Y. Tan, North-Holland, New York 1981, p. 333.Google Scholar
  49. 49.
    S. B. Berner, H. J. Gossmann, and R. T. Tung, Appl. Phys. Lett. 72 (1998) 2289.Google Scholar
  50. 50.
    A. Agarwall, H.-J. Gossmann, D. J. Eaglesham, S. B. Herner, A. T. Fiory, and T. E. Haynes, Appl. Phys. Lett. 74 (1999) 2435.Google Scholar
  51. 51.
    N. E. B. Cowern and C. S. Rafferty, Mat. Res. Soc. Bulletin, June (2000) 39.Google Scholar
  52. 52.
    N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65 (1990) 2434.Google Scholar
  53. 53.
    P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81 (1997) 6031.CrossRefGoogle Scholar
  54. 54.
    P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D.C. Jacobson, J.M. Poate, and H.S. Luftman, Appl. Phys. Lett. 66 (1995) 568.CrossRefGoogle Scholar
  55. 55.
    S. M. Hu, in Atomic diffusion in semiconductors, edited by D. Shaw ( Plenum, London 1973 ) p. 217.Google Scholar
  56. 56.
    L. Pelaz, M. Jaraiz, G. H. Gilmer, H. J. Gossmann, C. S. Rafferty, D. J. Eaglesham, and J. M. Poate, Appl. Phys. Lett. 70 (1997) 2285.Google Scholar
  57. 57.
    J. E. Rubio, M. Jaraiz, L. A. Bailon, J. Barbolla, M. J. Lopez, and G. H. Gilmer, Mat. Res. Soc. Symp. Proc. 514 (1998) 127.CrossRefGoogle Scholar
  58. 58.
    M. M. Bunea and S. T. Dunham, Phys. Rev. B 61 (2000) R2397.CrossRefGoogle Scholar
  59. 59.
    M. Jaraiz, G. H. Gilmer, J. M. Poate, and T. D. de la Rubia, Appl. Phys. Lett. 68 (1996) 409.CrossRefGoogle Scholar
  60. 60.
    F. Gamiz, I. Melchor, A. Palma, P. Cartujo, and J. A. Lopez-Villanueva, Semicond. Sci. Technol. 9 (1994) 1102.Google Scholar
  61. 61.
    J. Liu, PhD Thesis, University of Florida, Gainesville, FL, (1997).Google Scholar
  62. 62.
    M. D. Giles, J. Electrochem. Soc. 138 (1991) 285.CrossRefGoogle Scholar
  63. 63.
    L. Pelaz, G. H. Gilmer, M. Jaraiz, S. B. Herner, H.-J. Gossmann, D. J. Eaglesham, G. Hobler, C. S. Rafferty, and J. Barbolla, Appl. Phys. Lett. 73 (1998) 1421.Google Scholar
  64. 64.
    P. B. Griffin, R. F. Lever, R. Y. S. Huang, H. W. Kennel, P. A. Packan, and J. D. Plummer, Int. Electron Devices Meeting Tech. Dig. (1993) 295.Google Scholar
  65. 65.
    L. Pelaz, G. H. Gilmer, V. C. Venezia, H.-J. Gossmann, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74 (1999) 2017.Google Scholar
  66. 66.
    P. A. Packan and J. D. Plummer, Appl. Phys. Lett. 56 (1990) 1787.Google Scholar
  67. 67.
    K. S. Jones, J. Chen, S. Bharatan, J. Jackson, L. Rubin, M. Puga-Lambers, and D. Venables, J. Electron. Mater. 26 (1997) 1361.Google Scholar
  68. 68.
    G. Z. Pan, K. N. Tu, and S. Prussin, Appl. Phys. Lett. 71 (1997) 659.CrossRefGoogle Scholar
  69. 69.
    L. Pelaz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74 (1999) 3657.CrossRefGoogle Scholar
  70. 70.
    R. Pinacho, P. Castrillo, M. Jaraiz, J. Barbolla, H.-J. Gossmann, G. H. Gilmer, and J. L. Benton, Mat. Res. Soc. Spring Meeting, S. Francisco, CA (2001).Google Scholar
  71. 71.
    S. Deleonibus, C. Caillat, G. Guegan, M. Heitzmann, M. E. Nier, S. Tedesco, B. Dal’zotto, F. Martin, P. Mur, A. M. Papon, G. Lecarval, S. Biswas, and D. Souil, IEEE Electron Dev. Lett. 21 (2000) 173.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Jaraiz

There are no affiliations available

Personalised recommendations