Modeling of Electromigration in Interconnects

  • V. Petrescu
  • W. Schoenmaker
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)


Electromigration plays an important role in formulating design rules for onchip interconnects. The down-scaling of technologies leads to very high current densities, such that the induced stresses become comparable to the critical stresses that break iron bars. The physical processes that ultimately lead to electromigration failure consist of a series of mechanisms and the fate of an interconnect structure depends on a number of parameters. We review the electromigration phenomenon from a physical perspective, and define a CAD model for electromigration that is intermediate between a microscopic model and a fully phenomenological model of electromigration. Whereas the microscopic modeling is concerned with the molecular dynamics of the electron wind and lattice defects, the fully phenomenological model collects statistical failure information in a few compact formules. The CAD model is based on a hydrodynamical description of the motion of matter (migration) due to the electron wind forces, and is formulated in terms of local variables, that are large on a microscopic scale but local on a macroscopic scale.


Vacancy Concentration Resistance Change Current Stress Metallization Line Piezoresistance Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.B.Huntington, A.R. Grone, J. Phys. Chem. Solids, 20, 676 (1961).Google Scholar
  2. 2.
    S.R. deGroot, P. Mazur, Non-Equilibrium Thermodynamics, 3rd ed. ( North Holland Publishing Company, Amsterdam, London ), 1969.Google Scholar
  3. 3.
    B.D. Knowlton, J.J. Clement, R.I. Frank and C.V. Thompson, MRSS Proc., vol. 391, p. 189 (1995).CrossRefGoogle Scholar
  4. 4.
    S. Vaidya, T.T. Sheng, A.K. Sinha, Appl. Phys. Lett. 36 464 (1980).CrossRefGoogle Scholar
  5. 5.
    T. Kwok, Proc. of 26th Int. Rel. Ohys. Symp., p. 185 (1988).Google Scholar
  6. 6.
    J. Tao, N.W. Cheung, C. Hu, Proc. of the 33rd Int’l Rel. Phys. Symp., p. 371, (1995).Google Scholar
  7. 7.
    D. T. Walton, H.J. Frost, C.V. Thompson, MRSS Proc. vol. 255, p. 219 (1991).CrossRefGoogle Scholar
  8. 8.
    J. Lloyd, MRSS Proc. vol. 225, p. 47 (1991).CrossRefGoogle Scholar
  9. 9.
    P. Flinn, AIP, p. 73 (1992).Google Scholar
  10. 10.
    H. A. Schafft, IEEE Trans. Electron Dev. 34, 664 (1987).CrossRefGoogle Scholar
  11. 11.
    I. A. Blech, E. Kinsbron, Thin Solid Films, 25, 327 1975.CrossRefGoogle Scholar
  12. 12.
    I. A. Blech, J. Appl. Phys., 47, 1203, 1976.CrossRefGoogle Scholar
  13. 13.
    I. A. Blech, K.L. Tai, Appl. Phys. Lett., 30, 387 (1977).CrossRefGoogle Scholar
  14. 14.
    N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, 1st Edition, Clarendon, Oxford, 1936.Google Scholar
  15. 15.
    N.L. Beverly, G.B. Alers, J.A. Prybyla, Appl. Phys. Lett., 68, 2372 (1996).CrossRefGoogle Scholar
  16. 16.
    C. Hu, P. Ho, M. Small, K. Kelleher, Materials Rel. Issues in Microel. Symp, p. 99 (1991).Google Scholar
  17. 17.
    D. Frear, J. Michael, C. Kim, A. Romig, J. Morris, Proc. of the SPIE, vol. 1596, p. 72 (1991).CrossRefGoogle Scholar
  18. 18.
    S. Theiss, J. Prybyla, Mat. Rel. in Microelec. VI Symp., p. 207 (1996).Google Scholar
  19. 19.
    J.E. Sanchez, V. Pham, MRSS Proc., vol. 338, p. 459 (1994).CrossRefGoogle Scholar
  20. 20.
    J.R. Black, Proc. 6th Ann. Reliab. Phys. Symp., p. 148 (1967).Google Scholar
  21. 21.
    M. Shatzkes, J.R. Lloyd, J. Appl. Phys., 59 3890 (1986).CrossRefGoogle Scholar
  22. 22.
    R. Kirchheim, MRSS. Proc. vol. 309, p. 101 (1993).CrossRefGoogle Scholar
  23. 23.
    M.A. Korhonen, P. Borgesen, K.N. Tu and C.-Y. Li, J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
  24. 24.
    J.J. Clement and C.V. Thompson, J. Appl. Phys. 78, 900 (1995).CrossRefGoogle Scholar
  25. 25.
    J. Niehof, H.C. de Graaff, A.J. Mouthaan and J.F. Verwey, Solid St. Electr., 38, 1817 (1995).CrossRefGoogle Scholar
  26. 26.
    A.J. Mouthaan, V. Petrescu, Microelectron. Reliab., 38 99 (1998).CrossRefGoogle Scholar
  27. 27.
    A.J. Mouthaan, V. Petrescu, W. Schoenmaker, F. Groot, S. Angelescu, J. Niehof, M.D. Profirescu, Proc.of 25th ESSDERC, p. 311–314 (1995).Google Scholar
  28. 28.
    P.B.M Wolbert, G.K.M. Wachutka, B.H. Krabbenborg, and T.J. Mouthaan, IEEE Trans. Computer-Aided Design, 13 293 (1994).CrossRefGoogle Scholar
  29. 29.
    V. Petrescu, T. Mouthaan, W. Schoenmaker, S. Angelescu, R. Vissarion, G. Dima, H. Wallinga, M.D. Profirescu, Proc. of CAS’95, p. 327 (1995).Google Scholar
  30. 30.
    PRISM 2D Semiconductor Device Simulator, IMEC, 1995.Google Scholar
  31. 31.
    A. Scorzoni, I. De Munari and H. Stulens, MRSS. Proc., vol. 337 (1994).Google Scholar
  32. 32.
    P. Asoka-Kumar, K. O’Brien, K.G. Lynn, P.J. Simpson, K.P. Rodbell, Appl. Phys. Lett. 68, 406 (1996).CrossRefGoogle Scholar
  33. 33.
    R. Kirchheim, Acta Mettall. Mater. 40 309 (1992).Google Scholar
  34. 34.
    J.R. Lloyd, MRSS Proc. vol. 391, p. 231 (1995).CrossRefGoogle Scholar
  35. 35.
    B.D. Knowlton, J.J. Clement, R.I. Frank and C.V Thompson, MRSS Proc. vol. 391, p. 189 (1995).CrossRefGoogle Scholar
  36. 36.
    A.H. Verbruggen, M.J.C. van den Homberg, L.C. Jacobs, A.J. Kalkman, J.R. Kraayeveld, S. Radelaar, Fourth Int. Workshop of Stress Induced Phenomena in Metallization Proc., p. 135, 1997.Google Scholar
  37. 37.
    W. Schoenmaker, V. Petrescu, Microelectron. Reliab., 39, 1667 (1999).CrossRefGoogle Scholar
  38. 38.
    N.L. Beverly, G.B. Alers, J.A. Prybyla, Appl. Phys. Letter, 68 (17) 2372 (1996).CrossRefGoogle Scholar
  39. 39.
    A. Scorzoni, I. De Munari, H. Stulens, V. D’Haeger, J. Appl. Phys., 79, 12 (1996).Google Scholar
  40. 40.
    A. Blech, J. Appl. Phys., 47 1203 (1976).CrossRefGoogle Scholar
  41. 41.
    H. Toyoda, Pei-Hua Wang and P.S. Ho, IEEE IRPS Proc., p. 324 (1998).Google Scholar
  42. 42.
    J.W. McPherson, H.A. Le amd C.C. Graas, Microelectron. Reliab., 37 1469 (1997).CrossRefGoogle Scholar
  43. 43.
    R.G. Filippi, G.A. Biery and R.A. Wachnik, J. Appl. Phys. 78 3756 (1995).CrossRefGoogle Scholar
  44. 44.
    S. Domae, H. Masuda, K. Tateiwa, Y. Kato, M. Fujimoto, IEEE IRPS Proc., p. 318 (1998).Google Scholar
  45. 45.
    B.D. Knowlton, J.J. Clement, R.I. Frank and C.V. Thompson, MRSS Proc., vol. 391, p. 189–196 (1995).CrossRefGoogle Scholar
  46. 46.
    Y. Liu, C.L. Cox, R.J. Diefendorf, J. Appl. Phys., 83, 3600 (1998).CrossRefGoogle Scholar
  47. 47.
    R.G. Filippi, R.A. Wachnik, Appl. Phys. Lett., 69, 2350 (1996).CrossRefGoogle Scholar
  48. 48.
    J.R. Lloyd, MRSS Proc., vol. 391, p. 231 (1995).CrossRefGoogle Scholar
  49. 49.
    B. Baerg, IEEE IRPS Proc., p. 211 (1997).Google Scholar
  50. 50.
    E.M. Atakov, T.S. Sriram, D. Dunnel, S. Pizzanello, IEEE IRPS, p. 348 (1998).Google Scholar
  51. 51.
    A.S. Oates, Microelectron. Reliab., 36 925 (1996).CrossRefGoogle Scholar
  52. 52.
    A.S. Oates, Proc. of The Fourth International Workshop of Stress Induced phenomena in Metallization, p. 39, 1998.Google Scholar
  53. 53.
    J.R. Black, Proc. IEEE, vol. 57, p. 1587 (1969).CrossRefGoogle Scholar
  54. 54.
    G.L. Baldini, A. Scorzoni, IEEE Trans. Electron Devices, 38, 469 (1991).CrossRefGoogle Scholar
  55. 55.
    A. Scorzoni, G.C. Cardinali, G.L.Baldini, G. Soncini, Microelectron. Reliab., 30, 123 (1990).CrossRefGoogle Scholar
  56. 56.
    G.L. Baldini, A. Scorzoni and F. Tamarri, Microelectron. Reliab., 33, 1841 (1993).CrossRefGoogle Scholar
  57. 57.
    B.K. Jones, Y.Z. Xu, T.C. Denton and P. Zobbi, Microelectron. Reliab., 35, 13–25 (1995).CrossRefGoogle Scholar
  58. 58.
    J. Niehof, P.A. Flinn, T.J. Maloney, Quality and Reliability Eng. Intern., 9, 295 (1993).Google Scholar
  59. 59.
    A. Scorzoni, I. De Munari and H. Stulens, MRSS. Proc., vol. 337 (1994).Google Scholar
  60. 60.
    I. De Munari, M. Vanzi, A. Scorzoni, F. Fantini, Quality and Reliability Eng. Intern. 11, 33 (1995).Google Scholar
  61. 61.
    I. De Munari, A. Scorzoni, F. Tamarri, F. Fantini, Proc. of ESREF, p. 355 (1994).Google Scholar
  62. 62.
    R.G. Filippi, R.A. Wachnik, H. Aochi, J.R. Looyd, M.A. Korhonen, Appl. Phys. Lett., 69, 2350–2352 (1996).CrossRefGoogle Scholar
  63. 63.
    R.G. Filippi, G.A. Biery and R.A. Wachnik, J. Appl. Phys., 78, 3756 (1995).CrossRefGoogle Scholar
  64. 64.
    J. Niehof, H.C. de Graaff, A.J. Mouthaan and J.F. Verwey, Solid St. Electr., 38, 1817 (1995).CrossRefGoogle Scholar
  65. 65.
    Z. Li, C.L. Bauer, S. Mahajan and A.G. Milnes, J. Appl. Phys., 72, 1821 (1992).CrossRefGoogle Scholar
  66. 66.
    G.L. Baldini, I. De Munari, A. Scorzoni and F. Fantini, Microelectron. Reliab., 33, 1779 (1993).CrossRefGoogle Scholar
  67. 67.
    V. D’Haeger, PhD Thesis, Limburgs Universitair Centrum, Belgium, 1996.Google Scholar
  68. 68.
    A.D. Helfrick, W.D. Cooper, Modern electronic instrumentation and measurement techniques, Prentice-Hall, Englewood Cliffs, N.Y., 1990.Google Scholar
  69. 69.
    M. Dekker, High resolution electromigration bridge measurements, 250 hours project technical report, University of Twente, Enschede, 1999.Google Scholar
  70. 70.
    R. Pantaleoni, Master Thesis, University of Parma, 1997.Google Scholar
  71. 71.
    J.R. Kraayeveld, A.H. Verbruggen, S. Radelaar, Mat. Res. Soc. Symp. Proc., 1993.Google Scholar
  72. 72.
    T. Nemoto, T. Nogami, Proc. IEEE/IRPS, p. 207 (1994).Google Scholar
  73. 73.
    M. Avrami, J. Chem. Phys. 7, pp. 1103–1116, 1940.CrossRefGoogle Scholar
  74. 74.
    A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, S. Radelaar, MRSS Proc., vol. 473, p. 267–272 (1997).Google Scholar
  75. 75.
    W. Hayden, W.G. Moffatt, J. Wulff, Mechanical behavior, John Wiley Sons, 1965.Google Scholar
  76. 76.
    Y.-C. Joo, P. Muliner, S.P. Baker, E. Arzt, MRSS Proc., vol. 473, p. 409 (1997).Google Scholar
  77. 77.
    R. Rosenberg, P.E. Batson, J. Bruley, S.J. Splinter, D.A. Muller, Fourth International Workshop in Stress Induced Phenomena in Metallization Proc., p. 127, 1998.Google Scholar
  78. 78.
    R. Spolenak, O. Kraft, E. Artz, Microelectron. Reliab. 38, 1015 (1998).CrossRefGoogle Scholar
  79. 79.
    J. Philibert, Atom movements, diffusion and mass transport in solids, Les Editions des Physique, Les Ulis, France, 1991.Google Scholar
  80. 80.
    A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A62, 49 (1949).Google Scholar
  81. 81.
    N.L. Beverly, G.B. Alers, J.A. Prybyla, Appl. Phys. Lett., 68, 2372 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • V. Petrescu
  • W. Schoenmaker

There are no affiliations available

Personalised recommendations