Advertisement

Transistors and Atoms

  • J. Dąbrowski
  • E. R. Weber
  • H.-J. Müssig
  • W. Schröter
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)

Abstract

The unprecedented success of the “silicon revolution” has demonstrated that a new microelectronic technology can be developed and the existing one optimized in a straightforward way: by experimenting with processing parameters during production. The loss of some runs is treated as a contribution to the cost of production. But as these runs become more and more expensive, the importance of computer-aided design tools simulating device/circuit manufacture and operation is increasing. We summarize the topics in basic materials science which are likely to match the needs of the mainstream semiconductor technology, the Complementary Metal-Oxide-Semiconductor (CMOS), which is entering into the atomic-scale regime. In order to maintain the current pace of technological progress and still be economically viable, extreme control of atomistic processes is needed. The resulting new challenges for simulation of technological processes call for intensified, focused basic research. We discuss the prospective subjects and their technological background. We address the needs and the current status of research in the fields covered (doping, deposition, reliability, and device physics) in more detail in other chapters, and we briefly mention the situation in fields that are beyond the scope of this book (crystal growth, lithography, planarization, yield, and packaging). We also introduce the reader to the CMOS technology and to atomistic simulation techniques, and present the general trends in miniaturization.

Keywords

Chemical Mechanical Polishing Gate Oxide Gate Length Technology Node Heterojunction Bipolar Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Moore, Electronics 38, 114 (1965)Google Scholar
  2. 2.
    J. D4browski, H.-J. Müssig, M. Duane, S. T. Dunham, R. Goossens, and H.-H. Vuong, Advances in Solid State Physics 38, 565 (1999).Google Scholar
  3. 3.
    S. Thompson, M. Alavi, R. Arghavani, A. Brandi, R. Bigwood, J. Brandenburg, B. Crew, V. Dubin, M. Hussein, P. Jacob, C. Kenyon, E. Leel, B. Mcintyre, Z. Ma, P. Moon, P. Nguyen, M. Prince, R. Schweinfurth, S. Sivakumar, P. Smith, M. Stettler, S.Tyagi, M. Weil, J. Xu, S. Yang and M. Bohr, IEDM’0l Techn. Digest, 257 (2001).Google Scholar
  4. 4.
    R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, IEDM’00 Techn. Digest, 45 (2000).Google Scholar
  5. 5.
    J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. Caldas, Phys. Rev. B 65, 245305 (2002).Google Scholar
  6. 6.
    S. Cristoloveanu, in The VLSI Handbook, W.-K. Chen, editor (CRC Press LLC, 2000 ) p. 4. 1.Google Scholar
  7. 7.
    G. G. Shahidi, IBM J. Research and Development 46, 121 (2002)Google Scholar
  8. 8.
    R. Chau, J. Kavalieros, B. Doyle, A. Murthy, N. Pailsen, D. Lionberger, D. Barlage, R. Arghavani, B. Roberds, and M. Doczy, IEDM’01 Techn. Digest, 621 (2001).Google Scholar
  9. 9.
    T. H. Ning, IBM J. Research and Development 46, 181 (2002)Google Scholar
  10. 10.
    J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, IBM J. Research and Development 46, 245 (2002)Google Scholar
  11. 11.
    J. Dabrowski and H.-J. Müssig, “Silicon surfaces and formation of interfaces” ( World Scientific, Singapore, 2000 ).Google Scholar
  12. 12.
    D. J. Foster, Electronic Materials, L. S. Miller and J. B. Mullin (eds) ( Plenum Press, New York 1991 ) 173.Google Scholar
  13. 13.
    J. A. Appels, K. Kooi, M. M. Paffen, J. J. H. Schatorji, and W. H. C. G. Verkuylen, “Local oxidation of silicon and its application in semiconductor device technology” Philips Research Reports 25, 118 (1970).Google Scholar
  14. 14.
    S. Nag and A. Chatterjee, Solid State Technology 40, 129 (Sept. 1997).Google Scholar
  15. 15.
    B. Davari, C. Koburger, T. Furukawa, Y. Taur, W. Noble, A. Megdanis, J. Warnock, and J. Mauer, “A viable stress shallow trench isolation technology with diffused sidewall doping for submicron CMOS” IEDM’88 Techn. Digest, 92 (1988).Google Scholar
  16. 16.
    Y. J. Chabal (ed.), “Fundamental aspects of silicon uxidation”, Springer Series in Materials Science (Springer Verlag, Berlin, Heidelberg, 2001 ).Google Scholar
  17. 17.
    M. L. Green, E. P. Gusev, R. Degrave, and E. L. Garfunkel, J. Appl. Phys. 90, 2057 (2001).Google Scholar
  18. 18.
    TI readies 90-nm process for 2003 production; EE Times, February 6, 2002; http://www.eetimes.com/semi/news/0EG20020204S0046
  19. 19.
    International Technology Roadmap for Semiconductors; http://public.itrs.net/ (data from updates 2001 and 2002).
  20. 20.
    VLSI Research, http://www.vlsir.com
  21. 21.
    S.Kommu, and G. Wilson, ECS Proc. 97 -25, 222 (1997).Google Scholar
  22. 22.
    H. Habuka, M. Mayusumi, N. Tate, and M. Katayama, J. Cryst. Growth 151, 375 (1995).Google Scholar
  23. 23.
    E. Dornberger and W. v. Ammon, J. Electrochem. Soc. 143, 1648 (1996).Google Scholar
  24. 24.
    T. Sinno, R.A. Brown, W. Ammon, E. Dornberger, J. Electrochem. Soc. 145, 302 (1998).Google Scholar
  25. 25.
    E. Dornberger, J. Esfandyari, D. Graf, J. Vanhellemont, U. Lambert, F. Dupret, and W. v. Ammon, Electrochem. Soc. Proc 97 -22, 40 (1997).Google Scholar
  26. 26.
    R. Falster, V. V. Voronkov, and F. Quast, phys. stat. sol. (b) 222, 219 (2000).Google Scholar
  27. 27.
    E. W. Scheckler, K. K. H. Toh, D. M. Hoffstetter, and A. R. Neureuther, Techn. Dig. 1991 Symposium on VLSI Technology, Oiso, Japan, May 1991, T. Nishimura, C. R. Viswanathan, and S. S. Wong, editors (IEEE Electron Device Society, 1991 ) p. 97.Google Scholar
  28. 28.
    H. Kirchauer and S. Selberherr, Proc. ESSDERC’96, G. Baccarani and M. Rudan (eds) (Editions Frontieres, 1996 ) p. 347.Google Scholar
  29. 29.
    F. M. Schellenberg, Semiconductor Fabtech 9, 205 (1999)Google Scholar
  30. 30.
    L. W. Liebmann, S. M. Mansfield, A. K. Wong, M. A. Lavin, “TCAD development for lithography resolution enhancement”, IBM J. Research and Development 45, 651 (2001)Google Scholar
  31. 31.
    M. E. Law, IBM J. Research and Development 46, 339 (2002)Google Scholar
  32. 32.
    P. M. Fahey, P.B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).Google Scholar
  33. 33.
    J. Dgbrowski, Solid State Phenomena 71, R. P. Agarwala (ed.) ( Scitech Publications, Zürich 2000 ) p. 23.Google Scholar
  34. 34.
    R. Singh, J. Appl. Phys R63, 59 (1988).Google Scholar
  35. 35.
    M. A. Foad and D. Jennings, Solid State Technol 41, 43 (December 1998).Google Scholar
  36. 36.
    M. M. Moslehi, K. C. Saraswat, S. C. Shatas, Appl. Phys. Lett. 47, 1113 (1985); Appl. Phys. Lett. 47, 1353 (1985).Google Scholar
  37. 37.
    P. Münzinger, W. Lerch, R. Mader, N. Kobayashi, Solid State Technol. 41, 121 (June 1998).Google Scholar
  38. 38.
    A. D. Lilak, M. E. Law, K. S. Jones, M. D. Giles, and S. K. Earles, IEDM Tech. Digest, 493 (1997).Google Scholar
  39. 39.
    L. Pelaz, G. H. Gilmer, H.-J. Gossmann, and C. S. Rafferty, Appl. Phys. Lett. 74, 3657 (1999).Google Scholar
  40. 40.
    W. Windl, R. Stumpf, X.-Y. Liu, and M. P. Masquelier, Comp. Mat. Sci. 21, 496 (2001).Google Scholar
  41. 41.
    H.-J. Li, P. Kohli, S. Ganguly, T. A. Kirichenko, P. Zeitzoff, K. Torres, and S. Banerjee, Proc. 2001 Int. Conf. Comp. Nanosci. Techn. (ICCN-2001), Hilton Head Island, South Carolina, USA (National Science Technology Institute, 2001 ), p. 108.Google Scholar
  42. 42.
    A. D.Lilak, M. E.Law, L. Radic, K. S.Jones, and M. Clark, Appl. Phys. Lett. 81, 2244 (2002).Google Scholar
  43. 43.
    J. M. Jacques, L. S. Robertson, K. S. Jones, J. Bennett, and M. Rendon, in “Silicon front-end junction formation technologies” (MRS Proceedings Volume 717), D.F. Downey, M.E. Law, A.P., Claverie, M.J. Rendon (eds) MRS, 2002) C4.6.Google Scholar
  44. 44.
    D. F. Downey, J. W. Chow, E. Ishida, and K. S. Jones, Appl- Phys. Lett. 73, 1263 (1998).Google Scholar
  45. 45.
    S. Prussin and K. S. Jones, J. Electrochem. Soc. 137, 1912 (1990).Google Scholar
  46. 46.
    A. Sultan, M. Craig, K. Reddy, S. Banerjee, E. Ishida, P. Maillot, T. Neil, and L. Larson, Appl. Phys. Lett. 67, 1223 (1995).Google Scholar
  47. 47.
    S. Tian, S.-H. Yang, S. Morris, K. Parab, A. F. Tasch, D. Kamenitsa, R. Reece, B. Freer, R. B. Simonton, and C. Magee, Nucl. Instr. Meth. Phys. Res. 112, 144 (1996).Google Scholar
  48. 48.
    D. F. Downey, C. M. Osburn, J. J. Cummings, S. Daryanani, and S. W. Falk, Thin Solid Films 308, 562 (1997).Google Scholar
  49. 49.
    K. S. Jones, K. Moller, J. Chen, M. Puga-Lambers, B. Freer, J. Berstein, and L. Rubin, J. Appl. Phys. 81, 6051 (1997).Google Scholar
  50. 50.
    L. S. Robertson, K. S. Jones, A. Lilak, M. E. Law, P. S. Kringhoj, L. M. Rubin, J. Jackson, D. S. Simons, and P. Chi Appl. Phys. Lett. 71 3105 (1997).Google Scholar
  51. 51.
    A. Fissel, J. Dabrowski, and H. J. Osten, J. Appl. Phys. 91, 8986 (2002).Google Scholar
  52. 52.
    A. Claverie, B. Colombeau, G. Ben Assayag, C. Bonafos, F. Cristiano, M. Ormi, and B. de Mauduit, Mat. Sci. Semicond. Proc. 3, 269 (2000).Google Scholar
  53. 53.
    M. Law, private communication.Google Scholar
  54. 54.
    D. J. Frank, IBM J. Research and Development 46, 235 (2002)Google Scholar
  55. 55.
    J. H. Stathis and D. J. DiMaria, IEDM’98 Tech. Digest, 167 (1998).Google Scholar
  56. 56.
    B. E. Weir, M. A. Alam, J. D. Bude, P. J. Silverman, A. Ghetti, F. Baumann, P. Diodato, M. Monroe, T. Sorsch, G. T. Timp, Y. Ma, M. M. Brown, A. Hamad, D. Hwang, and P. Mason, Semicond. Sci. Technol. 15, 455 (2000).Google Scholar
  57. 57.
    SUPREM-4 Manual“, Silvaco International.Google Scholar
  58. 58.
    R. W. Dutton and Z. Yu, Technology CAD - computer simulation of IC processes and devices ( Kluwer Academic Publishers, Boston 1993 ).Google Scholar
  59. 59.
    B. E. Deal and A.S. Grove, J.Appl.Phys. 36, 3770 (1965).Google Scholar
  60. 60.
    W.A. Tiller, J. Eletrochem. Soc. 130, 501 (1983).Google Scholar
  61. 61.
    A. Fargeix and G. Ghibaudo, J. Appl. Phys. 56, 589 (1984).Google Scholar
  62. 62.
    S.M. Hu, J. Appl. Phys. 55, 4095 (1984).Google Scholar
  63. 63.
    G. Cernera Roda, F. Santarelli, and G. C. Satri, J. Electrochem. Soc. 132, 1909 (1985).Google Scholar
  64. 64.
    V. Murali, S.P. Murarka, J. Appl. Phys. 60, 2106 (1986).Google Scholar
  65. 65.
    R.B. Beck and B. Majkusiak, phys. stat. sol. (a) 116, 313 (1988).Google Scholar
  66. 66.
    D. R. Wolters and A. T. A. Zegers - van Duynhoven, J. Electrochem. Soc. 139, 241 (1992).Google Scholar
  67. 67.
    A. Kazor, J. Appl. Phys. 77, 1477 (1995).Google Scholar
  68. 68.
    L. Verdi and A. Miotello, Phys. Rev. B 51, 5469 (1995).Google Scholar
  69. 69.
    S.-F. Huang, P. B. Griffin, J. D. Plummer, P. Rissman, Proceedings SISPAD’97, 49 (1997).Google Scholar
  70. 70.
    R.M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol, and F. C. Stedile, Phys. Rev. B 61, 12992 (2000).Google Scholar
  71. 71.
    B. Yu, B. Wang, A. Joshi, Q. Xiang, E. Ibok, M. Lin, IEDM’01 Techn. Dig., 937 (2001).Google Scholar
  72. 72.
    J.-Y. Tsai, J. Sun, K. F. Yee, and C. M. Osburn, IEEE Electron Dev. Lett. 17, 331 (1996).Google Scholar
  73. 73.
    K. Maex, Mat Sci. Eng. R11, 53 (1993), and references therein.Google Scholar
  74. 74.
    F. M. D’Heurle, Journal de Physique IV C 6, 29 (1996).Google Scholar
  75. 75.
    The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, (1997).Google Scholar
  76. 76.
    T. N. Theis, IBM J. Research and Development 44, 379 (2000)Google Scholar
  77. 77.
    C.L. Gan, C.V. Thompson, K.L. Pey, and W.K. Choi, J. Appl. Phys. 94, 1222 (2003)Google Scholar
  78. 78.
    J. R. Lloyd and J. J. Clement, Thin Solid Films 262, 135 (1995)Google Scholar
  79. 79.
    K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and C. Hu, Proc. 36th Design Automation Conference (DAC’99), New Orleans, LA, USA, June 1999 (ACM, 1999 ), p. 885.Google Scholar
  80. 80.
    J. R. Lloyd, Semicond. Sci. Technol. 12, 1170 (1997).Google Scholar
  81. 81.
    X. Yu and K. Weide, in MRS Proceedings, vol. 539, G. E. Beltz, R. L. Blumberg Selinger, M. P. Marder, and K-S. Kim (eds), MRS (1999), p. 269.Google Scholar
  82. 82.
    J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjai, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B 55, 4921 (1997).Google Scholar
  83. 83.
    D. Ugarte, A. Châtelain, and W. A. de Heer, Science 274, 1897 (1996).Google Scholar
  84. 84.
    Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).Google Scholar
  85. 85.
    D. A. B. Miller, in Heterogeneous integration: systems on a chip, A. Husain and M. Fallahi (eds), SPIE Critical Reviews of Optical Engineering, vol. CR70 (SPIE, Bellingham, WA, 1998) p. 80109; and references therein.Google Scholar
  86. 86.
    S. Rusu, Proceedings of ESSCIRC, 2001; http://www.esscirc.org/esscirc2001/proceedings/data/404.pdf Google Scholar
  87. 87.
    L. F. Tz. Kwakman, M. Omini, D. Levy, and D. Malgouyres, Solid State Phenomena 65, 31 (1999)Google Scholar
  88. 88.
    G. J. Norga, M. Platero, K. A. Black, A. J. Reddy, J. Michel, and L. C. Kimerling, J. Electrochem. Soc. 144, 2801 (1997).Google Scholar
  89. 89.
    W. Fyen, L. Mouche, M. Meuris, M. M. Heyns, J. Zahka, J. Electrochem. Soc. 144, 2189 (1997).Google Scholar
  90. 90.
    M. Heyns, M. Meuris, and P. Mertens (editors), Proceedings of the Fourth International Symposium on Ultra Clean Processing of Silicon Surfaces, Ostend, Belgium, Sept. 1998, Solid State Phenomena 65 (1999).Google Scholar
  91. 91.
    K. Saga and T. Hattori, Appl. Phys. Lett. 71, 3670 (1997).Google Scholar
  92. 92.
    W. B. Henley, L. Jastrzebski, and N. F. Haddad, in “Defect engineering in semiconductor growth, processing and device technology” (MRS Proceedings, vol. 262), S. Ashok, J. Chevallier, K. Sumino, and E. Weber (eds), MRS (1992), p. 993.Google Scholar
  93. 93.
    A. A. Istratov, H. Hieslmair, and E. R. Weber, Applied Physics A 69, 13 (1999); A. A. Istratov, H. Hieslmair, and E. R. Weber, Applied Physics A 70, 489 (2000); A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149, G21 (2002).Google Scholar
  94. 94.
    C.J. Sofield, A. M. Stoneham, Semicond. Sci. Technol. 10, 215 (1995).Google Scholar
  95. 95.
    S. A. McHugo and C. Flink, Appl. Phys. Lett. 77, 3598 (2000).Google Scholar
  96. 96.
    A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A: Mater. Sci. Process. 70, 489 (2000).Google Scholar
  97. 97.
    S. A. McHugo, E.R. Weber, M. Mizuno, and F.G. Kirscht, Appl. Phys. Lett. 66, 2840 (1995).Google Scholar
  98. 98.
    P.A. Stolk, J.L. Benton, D. J. Eaglesham, and D.C. Jacobson, Appl. Phys. Lett. 68, 51 (1996).Google Scholar
  99. 99.
    F. Riedel and W. Schröter, Phys. Rev. B 62, 7150 (2000).Google Scholar
  100. 100.
    W. Schröter and H. Cerva Solid State Phenom. 82–84, 213 (2002).Google Scholar
  101. 101.
    P. S. Plekhanov and T. Y. Tan, Appl. Phys. Lett. 76, 3777 (2000).Google Scholar
  102. 102.
    O. F. Vyvenko, T. Buonassisi, A. A. Istratov, H. Hieslmair and A. C. Thompson, R. Schindler, and E. R. Weber, J. Appl. Phys 91, 3614 (2002).Google Scholar
  103. 103.
    S. Myers, M. Seibt, and W. Schröter, J. Appl. Phys 88, 3795 (2000).Google Scholar
  104. 104.
    W. Schröter, M. Seibt, and D. Gilles, in Handbook of Semiconductor Technology, ed. K. A. Jackson and W. Schröter, Wiley-VCH 2000, vol. 1, p. 597.Google Scholar
  105. 105.
    E. R. Weber, D. Gilles, in Proceedings of the Sixth Int. Symp. on Silicon Materials Science and Technology: Semiconductor Silicon 1990, H.R. Huff, K.G. Barraclough, and J.I.Chikawa (eds), The Electrochemical Society, Pennington (1990) p. 585.Google Scholar
  106. 106.
    H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, C. Kaanta, C. Koburger, W. Lange, M. Leach, S. Luce, Thin Solid Films 220, 1 (1992).Google Scholar
  107. 107.
    G. Nanz, L. Camilletti, IEEE Trans. Semiconduct. Manufact. 8, 382, (1995).Google Scholar
  108. 108.
    S. H. Li and B. Miller (eds), Chemical mechanical olishing in silicon processing, Semiconductors and Semimetals, vol. 63 ( Academic Press, San Diego, CA, 2000 ).Google Scholar
  109. 109.
    D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, IEEE Trans. Semicond. Manufact. 15, 232 (2002).Google Scholar
  110. 110.
    J. T. Pan, D. Ouma, P. Li, D. Boning, F. Redecker, J. Chung, and J. Whitby, Proc. VLSI Multilevel Interconn. Conf., Santa Clara, CA, 1998, p. 467.Google Scholar
  111. 111.
    D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, IEEE Trans. Semicond. Manufact. 15, 232–244 (2002).Google Scholar
  112. 112.
    H.-H. Vuong, Challenges in Predictive Process Simulations, Wandlitz, Germany, 1997; http://www.ihp-ffo.de/chipps/97/Djpg/Dposters/vuong.html Google Scholar
  113. 113.
    B. Lee, D. Boning, W. Baylies, N. Poduje, and J. Valley, in “Chemical-Mechanical Planarization”, MRS Proceedings, vol. 732E, S. V. Babu, R. Singh, N. Hayasaka, M. Oliver (eds), MRS (2002), 11. 5; http://www.mrs.org/publications/epubs/proceedings/spring2002/i/Google Scholar
  114. 114.
    M. Duane, Challenges in Predictive Process Simulations, Wandlitz, Germany, 1997; http://www.ihp-ffo.de/chipps/Djpg/Duane.html
  115. 115.
    The national technology roadmap for semiconductors, Semiconductor Industry Association (1994).Google Scholar
  116. 116.
    J. Lorenz, B. Baccus, W. Henke, Microelectronic Engineering 34, 85 (1996).Google Scholar
  117. 117.
    M. R. Pinto, C. S. Rafferty, R. K. Smith, and J. Bude, IEDM’93 Techn. Digest, p. 701 (1993).Google Scholar
  118. 118.
    K. Jones et. al., 11th Int. Conf. on Ion Implantation Technology, Austin, Texas, June 1996, p. 618 (1996).Google Scholar
  119. 119.
    Solid State Technology, December 1996, p. 34 (summary of the 4th Int. Conf. on Advanced Thermal Processing of Semiconductors, RTP’96, Boise, Idaho).Google Scholar
  120. 120.
    J. Nakos, in Rapid Thermal and Laser Processing, SPIE Proceedings, vol. 1804, p. 24 (1993).Google Scholar
  121. 121.
    A. C. Diebold, M. Kump, K. J. Kopanski, and D. G. Seiler, J. Vac. Sci. Techn. B 14, 196 (1996).Google Scholar
  122. 122.
    L.A. Heimbrook, F.A. Baiocchi, T.C. Bittner, M. Geva, H.S. Luftman, S. Nakahara, J. Vac. Sci. Techn. B 14, 202 (1996); see also other papers in this volume.Google Scholar
  123. 123.
    T. Clarysse, P. De Wolf, H. Bender, and W. Vandervorst, J. Vac. Sci. Techn. B 14, 358 (1996).Google Scholar
  124. 124.
    M. R. Radeke, E. A. Carter, Ann. Rev. Phys. Chem. 48, 243 (1997).Google Scholar
  125. 125.
    W. Kohn, L. J. Sham, Phys. Rev. 140, A 1133 (1965).Google Scholar
  126. 126.
    R. O. Jones, O. Gunnarsson, Rev. Mod. Phys 61, 689 (1989).Google Scholar
  127. 127.
    R. M. Dreizler, E. K. U. Gross, Density Functional Theory ( Springer, Berlin 1990 )Google Scholar
  128. 128.
    M.C. Payne, M. P. Teter, D. C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
  129. 129.
    J. P. Perdew, Physica B 172, 1 (1991).Google Scholar
  130. 130.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. A. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).Google Scholar
  131. 131.
    C. J. Umrigar and X. Gonze, in High performance computing and its application to the physical sciences, Proc. Mardi Gras 1993 Conference ( World Scientific, Singapore, 1993 ), p. 43.Google Scholar
  132. 132.
    J. P. Perdew, K. Burke, and M. Enzerhoff, Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
  133. 133.
    P. Nachtigall, K. D. Jordan, A. Smith, and H. Jónsson, J. Chem. Phys. 104, 148 (1996).Google Scholar
  134. 134.
    M. Fuchs, M. Bockstedte, E. Pehlke, M. Scheffler, Phys. Rev. B 57, 2134 (1998).Google Scholar
  135. 135.
    A. Groß, Surf. Sci. Rep. 32, 291 (1998).Google Scholar
  136. 136.
    D. M. Ceperley and L. Mitas, Advances in Chemical Physics 93, I. Prigogine and S. A. Rice (eds), Willey (1996), p. 1.Google Scholar
  137. 137.
    D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
  138. 138.
    J. P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
  139. 139.
    R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, R. J. Needs, and W. M. C. Foulkes, Phys. Rev. Lett. 78, 3350 (1997).Google Scholar
  140. 140.
    G. Rajagopal, R. J. Needs, S. D. Kenny, W. M. C. Foulkes, and A. J. James, Phys. Rev. Lett. 73, 1959 (1994).Google Scholar
  141. 141.
    L. Colombo, Annual Reviews of Computational Physics, vol. IV, D. Stauffer (ed), World Scientific, Singapore (1996) p. 147.Google Scholar
  142. 142.
    F. Stillinger and T. Weber, Phys. Rev. B 31, 5262 (1985); Erratum, Phys. Rev. B 33, 1451 (1986).Google Scholar
  143. 143.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989).Google Scholar
  144. 144.
    H. Rucker and M. Methfessel, Phys. Rev. B 52, 11059 (1995).Google Scholar
  145. 145.
    M. J. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev. B 55, 14279 (1997).Google Scholar
  146. 146.
    C.P. Toh, S.H. Seow, and C.K. Ong, Surf. Sci. 292, 114 (1993).Google Scholar
  147. 147.
    Q.-M. Zhang, C. M. Roland, P. Boguslawski, J. Bernholc, Phys. Rev. Lett. 75, 101 (1995).Google Scholar
  148. 148.
    T. Yamasaki, T. Uda, and K. Terakura, Phys. Rev. Lett. 76, 2949 (1996).Google Scholar
  149. 149.
    A. Baldereschi, Phys. Rev. B 7, 5212 (1973).Google Scholar
  150. 150.
    H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976).Google Scholar
  151. 151.
    W. R. Fehlner, S. H. Vosko, Canadian Journal of Physics 55, 2041 (1978).Google Scholar
  152. 152.
    M. J. Puska, S. Pöykkö, M. Pesola, R. M. Nieminen, Phys. Rev. B 58, 1318 (1998).Google Scholar
  153. 153.
    X. P. Li, W. Nunes, D. Vanderbilt, Phys. Rev. B 47, 10891 (1993).Google Scholar
  154. 154.
    W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).Google Scholar
  155. 155.
    E. L. Briggs, D. Sullivan, J. Bernholc, Phys. Rev. B 54, 14362 (1996).Google Scholar
  156. 156.
    C.M. Goringe, E. Hernandez, M.J. Gillan, I. J. Bush, Computer Physics Communications 102, 1 (1997).Google Scholar
  157. 157.
    E. Hernandez, M.J. Gillan, C.M. Goringe, Phys. Rev. B 53, 7147 (1996).Google Scholar
  158. 158.
    P. Ordejón, E. Artacho, J. M. Soler, Phys. Rev. B 53, 10441 (1996).Google Scholar
  159. 159.
    A.P. Smith, J.K. Wiggs, H. Jónsson, H. Yan, L.R. Corrales, P. Nachtigall, K. D. Jordan, J. Chem. Phys. 102, 1044 (1995).Google Scholar
  160. 160.
    C. Yang, S. Y. Lee, H. C. Kang, J. Chem. Phys. 107, 3295 (1997).Google Scholar
  161. 161.
    E. Penev, P. Kratzer, M. Scheffier, J. Chem. Phys. 110, 3986 (1999).Google Scholar
  162. 162.
    J. C. Wu, I. V. Ionova, E. A. Carter, Phys. Rev. B 49, 13488 (1994).Google Scholar
  163. 163.
    A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1217 (2001).Google Scholar
  164. 164.
    P. G. Collins, M. S. Arnold, and Ph. Avouris, Science 292, 706 (2001).Google Scholar
  165. 165.
    IBM creates highest performing nanotube transistors, IBM News, May 20, 2002; http://www.ibm.com/news/us/2002/05/20.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Dąbrowski
  • E. R. Weber
  • H.-J. Müssig
  • W. Schröter

There are no affiliations available

Personalised recommendations