Skip to main content

Projecting the Success of Plant Population Restoration with Viability Analysis

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 165))

Abstract

Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5 % (Menges 1991,1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduced in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993,1994; Bowles et al. 1993,1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildl Manage 62:821–841

    Article  Google Scholar 

  • Betz RF (1989) Ecology of Mead’s milkweed (Asclepias meadii Torrey). In: Bragg TB, Stubbendieck J (eds) Proceedings of the eleventh North American Prairie Conference. University of Nebraska, Lincoln, pp 187–191

    Google Scholar 

  • Betz RF, Struven RD, Wall JE, Heitier FB (1994) Insect pollinators of 12 milkweed (Asclepias) species. In: Wickett RG, Lewis PD, Woodliffe A, Pratt P (eds) Proceedings of the thirteenth North American Prairie Conference. Department of Parks and Recreation, Windsor, Ontario, Canada, pp 45–60

    Google Scholar 

  • Bowles ML, Bell TJ (1999) Establishing recovery targets for Illinois plants. Report to the Illinois Endangered Species Protection Board. The Morton Arboretum, Lisle, Illinois

    Google Scholar 

  • Bowles ML, McBride JL (1996) Status and structure of a Pitcher’s thistle (Cirsium pitcheri) population reintroduced to Illinois Beach Nature Preserve. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 194–218

    Google Scholar 

  • Bowles ML, Whelan CJ (eds) (1994) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge

    Google Scholar 

  • Bowles ML, Flakne R, McEachern K, Pavlovic N (1993) Recovery planning and reintroduction of the federally threatened Pitcher’s thistle (Cirsium pitcheri) in Illinois. Nat Area J 13:164–176

    Google Scholar 

  • Bowles ML, McBride JL, Betz RF (1998) Management and restoration ecology of the federal threatened Mead’s milkweed, Asclepias meadii Torrey (Asclepiadaceae). Ann Mo Bot Gar 85:110–125

    Article  Google Scholar 

  • Bowles ML, McBride JL, Bell TJ (2001) Restoration of the federally threatened Mead’s milkweed (Asclepias meadii). Ecol Restor 19:235–241

    Google Scholar 

  • Brown JS (1994) Restoration ecology: living with the prime directive. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 355–380

    Chapter  Google Scholar 

  • Brumback WE, Fyler CW (1996) Small whorled pogonia (Isotria medeoloides) transplant project. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 445–451

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation. 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Chen H, Maun MA (1998) Population ecology of Cirsium pitcheri on Lake Huron sand dunes: III. Mechanisms of seed dormancy. Can J Bot 76:575–586

    Google Scholar 

  • Coulson T, Mace GM, Hudson E, Possingham H (2001) The use and abuse of population viability analysis. Trends Ecol Evol 16:219–221

    Article  PubMed  Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423

    Article  Google Scholar 

  • Crowder LB, Couse DT, Heppel SS, Martin TH (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecol Appl 4:437–445

    Article  Google Scholar 

  • Cully A (1996) Knowlton’s cactus (Pediocactus knowltonii) reintroduction. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 403–410

    Google Scholar 

  • DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550

    Article  Google Scholar 

  • DeMauro MM (1994) Development and implementation of a recovery program for the federal threatened Lakeside daisy (Hymenoxys acaulis var. glabra). In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 298–321

    Chapter  Google Scholar 

  • Doak D, Kareiva P, Klepteka B (1994) Modeling population viability for the desert tortoise in the western Mohave Desert. Ecol Appl 4:446–460

    Article  Google Scholar 

  • Falk DA, Millar CI, Olwell M (eds) (1996) Restoring diversity: strategies for reintroduction of endangered plants. Island Press, Washington, DC

    Google Scholar 

  • Fenster CB, Galloway LF (2000) Inbreeding and outbreeding depression in natural populations of Chamaecristata fasciculate (Fabaceae). Conserv Biol 14:1406–1412

    Article  Google Scholar 

  • Ferson S (1994) RAMAS/Stage: Generalized stage-based modeling for population dynamics. Applied Biomathematics, Seatuket, New York

    Google Scholar 

  • Fiedler PL (1987) Life history and population dynamics of rare and common mariposa lilies. J Ecol 75:977–995

    Article  Google Scholar 

  • Fiedler PL, Knapp FE, Fredricks N (1998) Rare plant demography: lessons from the mariposa lilies (Calochortus: Liliaceae). In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade, 2nd edn. Chapman and Hall, New York, pp 28–48

    Chapter  Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin IA (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149

    Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, MA, pp 19–34

    Google Scholar 

  • Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, New York, pp 2–34

    Google Scholar 

  • Gordon DR (1996) Apalachicola rosemary (Conradina glabra) reintroduction. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 417–422

    Google Scholar 

  • Guerrant EO Jr (1996) Designing populations: demographic, genetic, and horticultural dimensions. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 171–207

    Google Scholar 

  • Guerrant EO Jr, Fiedler PL (2003) Attrition during ex situ storage and reintroduction. In: Guerrant EO Jr, Havens K, Maunder M (eds) Saving the pieces: the role, value and limit of ex situ plant conservation. Island Press, Washington, DC

    Google Scholar 

  • Guerrant EO Jr, Pavlik BM (1998) Reintroduction of rare plants: genetics, demography, and the role of ex situ conservation methods. In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade, 2nd edn. Chapman and Hall, New York, pp 80–108

    Chapter  Google Scholar 

  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86

    Google Scholar 

  • Harrison WF (1988) Endangered and threatened wildlife and plants; determination of threatened status for Asclepias meadii (Mead’s milkweed). Fed Regis 53:33982–33994

    Google Scholar 

  • Hayworth D, Bowles ML, Schaal B, Williamson K (2002) Clonal population structure of the federal threatened Mead’s Milkweed, as determined by RAPD analysis, and its conservation implications. In: Bernstein N, Ostrander LJ (eds) Proceedings of the Seventeenth North American Prairie Conference: seeds for the future; roots of the past. North Iowa Area Community College, Mason City, Iowa

    Google Scholar 

  • Heppell SS, Walters JR, Crowder LB (1994) Evaluating management alternatives for red-cockaded wood-peckers: a modeling approach. J Wildl Manage 58:479–487

    Article  Google Scholar 

  • Huenneke LF (1991) Ecological implications of genetic variation in plant populations. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 31–44

    Google Scholar 

  • Karl TR, Knight RW (1985) Atlas of monthly Palmer drought severity index (1931–1983) for the contiguous United States. National Climatic Data Center, Asheville, NC; see http://www.ncdc.noaa.gov/onlineprod/drought/main.html aiso

    Google Scholar 

  • Kaye TN, Pendergrass KL, Finley K, Kauffman JB (2001) The effect of fire on the population viability of an endangered prairie plant. Ecol Appl 11:1366–1380

    Article  Google Scholar 

  • Keddy CJ, Keddy PA (1984) Reproductive biology and habitat of Cirsium pitched. Mich Bot 23:57–67

    Google Scholar 

  • Kettle WD, Alexander HM, Pittman GL (2000) An 11 year ecological study of a rare perennial (Aslcepias meadii): implications for monitoring and management. Am Midl Nat 144:66–79

    Article  Google Scholar 

  • Knapp RE, Dyer AR (1998) When do genetic considerations require special approaches to ecological restoration? In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade, 2nd edn. Chapman and Hall, New York, pp 345–363

    Chapter  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Ledig FT (1996) Pinus torreyana at Torrey Pines State Reserve, California. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 265–271

    Google Scholar 

  • Louda SM (1994) Experimental evidence for insect impact on populations of short-lived, perennial plants, and it’s application in restoration ecology. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 118–138

    Chapter  Google Scholar 

  • Loveless MD (1984) Population biology and genetic organization in Cirsium pitcheri, an endemic thistle. PhD Diss, University of Kansas, Lawrence

    Google Scholar 

  • Mangel M, Tier C (1994) Four facts every conservation biologist should know about persistence. Ecology 75:607–614

    Article  Google Scholar 

  • McEachern K (1992) Disturbance dynamics of pitcher’s thistle (Cirsium pitcheri) in Great Lake sand dune landscapes. PhD Diss, University of Wisconsin, Madison

    Google Scholar 

  • McEachern K, Bowles ML, Pavlovic N (1994) A metapopulation approach to recovery of the federally threatened Pitcher’s thistle (Cirsium pitcheri) in southern Lake Michigan dunes. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 194–218

    Chapter  Google Scholar 

  • Menges ES (1990) Population viability analysis for an endangered plant. Conserv Biol 4:52–62

    Article  Google Scholar 

  • Menges ES (1991) The application of minimum viable population theory to plants. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 45–61

    Google Scholar 

  • Menges ES (1998) Evaluating extinction risks in plant populations. In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade, 2nd edn. Chapman and Hall, New York, pp 49–65

    Chapter  Google Scholar 

  • Menges ES (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56

    Article  PubMed  Google Scholar 

  • Morris W, Doak D, Groom M, Kareiva P, Fieberg J, Gerber L, Murphy P, Thomson D (1999) A practical handbook for population viability analysis. The Nature Conservancy, Arlington, VA

    Google Scholar 

  • Olwell P, Cully A, Knight P (1990) The establishment of a new population of Pediocactus knowltonii: third year assessment. In: Mitchell RS, Sheviak CJ, Leopold DJ (eds) Ecosystem management: rare species and significant habitats. NY State Mus Bull 471:189–193

    Google Scholar 

  • Pavlik BM (1994) Demographic monitoring and the recovery of endangered plants. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 322–350

    Chapter  Google Scholar 

  • Pavlik BM (1996) Defining and measuring success in rare plant reintroductions. In: Falk D, Olwell P, Millar C (eds) Restoring diversity: ecological restoration and endangered plants. Island Press, New York, pp 127–155

    Google Scholar 

  • Pavlik BM, Nickrent DL, Howald AM (1993) The recovery of an endangered plant. I. Creating a new population of Amsinckia grandiflora. Conserv Biol 7:510–526

    Article  Google Scholar 

  • Pavlovic NB, Bowles ML, Crispin S, Gibson T, Kavetsky R, McEachern KA, Penskar M (2003) Pitchers’s thistle (Cirsium pitcheri) recovery plan. US Department of the Interior, Fish and Wildlife Service, Minneapolis

    Google Scholar 

  • Rowland J, Maun MA (2001) Restoration ecology of an endangered plant species: establishment of new populations of Cirsium pitcheri. Restor Ecol 9:60–70

    Article  Google Scholar 

  • Sarrazin F, Legendre S (2000) Demographic approach to releasing adults versus young in reintroductions. Conserv Biol 14:488–500

    Article  Google Scholar 

  • Shaffer ML (1981) Minimum population size for species conservation. Bio Science 3:131–134

    Google Scholar 

  • Shaffer ML (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, New York, pp 69–86

    Chapter  Google Scholar 

  • Silvertown J, Franco M, McConway K (1992) A demographic interpretation of Grimes’s triangle. Funct Ecol 6:130–136

    Article  Google Scholar 

  • Silvertown J, Franco M, Menges E (1996) Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conserv Biol 10:591–597

    Article  Google Scholar 

  • Steinberg EK, Jordon CE (1998) Using molecular genetics to learn about the ecology of threatened species: the allure and illusion of measuring genetic structure in natural populations. In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade, 2nd edn. Chapman and Hall, New York, pp 440–460

    Chapter  Google Scholar 

  • Tecic D, McBride JL, Bowles ML, Nickrent DL (1998) Genetic variability in the federal threatened Mead’s milkweed, Asclepias meadii Torrey (Asclepiadaceae) as determined by allozyme electrophoresis. Ann Mo Bot Gar 85:97–109

    Article  Google Scholar 

  • Weller SG (1994) The relationship of rarity to plant reproductive biology. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 90–117

    Chapter  Google Scholar 

  • Wyatt R, Broyles SB (1994) Ecology and evolution of reproduction in milkweeds. Annu Rev Ecol Syst 25:423–441

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bell, T.J., Bowles, M.L., McEachern, A.K. (2003). Projecting the Success of Plant Population Restoration with Viability Analysis. In: Brigham, C.A., Schwartz, M.W. (eds) Population Viability in Plants. Ecological Studies, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09389-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09389-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07869-9

  • Online ISBN: 978-3-662-09389-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics