Advertisement

Mode of Action of Sulfonylureas

  • U. Panten
  • M. Schwanstecher
  • C. Schwanstecher
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 119)

Abstract

Both pancreatic and extrapancreatic effects have been suggested to contribute to the therapeutic benefit of sulfonylureas for type II diabetic patients. Clear evidence for stimulation of insulin secretion by sulfonylureas has been presented (Loubatières 1957a, b; Yalow et al. 1960; Bouman and Gaarenstrom 1961; Coore and Randle 1964; Malaisse et al. 1967). On the other hand, sulfonylurea-induced extrapancreatic effects observed in clinical studies may have been consequences of an increase in insulin secretion (Gerich 1989; Melander et al. 1989). This view is not invalidated by the numerous in vitro investigations demonstrating direct effects of sulfonylureas on metabolism of extrapancreatic cells (for a review see Beck-Nielsen et al. 1988). Most of the latter effects occurred at free (non-protein-bound) sulfonylurea concentrations well beyond those measured in the plasma from treated patients (for references see Panten et al. 1989). In the plasma, sulfonylureas are highly protein bound, e.g., 6% of tolbutamide and less than 1% of glibenclamide are free. The free proportions of sulfonylureas easily cross capillary walls (perhaps with the exception of the blood-brain barrier capillaries) for the following reasons: Firstly, due to their high lipid solubility sulfonylureas rapidly penetrate membranes (Panten et al. 1989). Secondly, fenestrated endothelia (e.g., in pancreatic islets) are no barriers for sulfonylureas (M r < 500).

Keywords

KATP Channel Sulfonylurea Receptor Hypoglycemic Sulfonylurea Glibenclamide Binding Stimulatory Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB, Boyd AE III (1990) Photoaffinity labeling and partial purification of the β-cell sulfonylurea receptor using a novel, biologically active glyburide analog. J Biol Chem 265:8218–8224PubMedGoogle Scholar
  2. Aguilar-Bryan L, Nichols CG, Rajan AS, Parker C, Bryan J (1992) Co-expression of sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14934–14940PubMedGoogle Scholar
  3. Ali L, Wesslén N, Hellman B (1988) Sulphonamide modulation of sodium content in rat pancreatic islets. Eur J Pharmacol 158:257–262PubMedCrossRefGoogle Scholar
  4. Ali L, Wesslén N, Hellman B (1989) The effect of glibenclamide and its non-sulfonylurea analogue HB 699 on the sodium content of rat pancreatic islets. Exp Clin Endocrinol 93:299–306PubMedCrossRefGoogle Scholar
  5. Allard B, Lazdunski M (1992) Nucleotide diphosphates activate the ATP-sensitive potassium channel in mouse skeletal muscle. Pflügers Arch 422:185–192PubMedCrossRefGoogle Scholar
  6. Allard B, Lazdunski M (1993) Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Eur J Pharmacol 236:419–426PubMedCrossRefGoogle Scholar
  7. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M (1990) Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247:852–854PubMedCrossRefGoogle Scholar
  8. Ashcroft SJH (1994) The beta-cell sulfonylurea receptor. Diab Nutr Metab 7:149–163Google Scholar
  9. Ashcroft SJH, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2:197–214PubMedCrossRefGoogle Scholar
  10. Ashcroft SJH, Ashcroft FM (1992) The sulfonylurea receptor. Biochim Biophys Acta 1175:45–59PubMedCrossRefGoogle Scholar
  11. Ashcroft FM, Rorsman P (1991) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143CrossRefGoogle Scholar
  12. Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448PubMedCrossRefGoogle Scholar
  13. Ashford MLJ (1990) Potassium channel and modulation of insulin secretion. In: Cook NS (ed) Potassium channels: structure, classification, function and therapeutic potential. Ellis Horwood, Chichester, pp 300–325Google Scholar
  14. Ashford MLJ, Sturgess NC, Trout NJ, Gardner NJ, Hales CN (1988) Adenosine-5’ triphosphate-sensitive ion channels in neonatal rat cultured central neurons. Pflügers Arch 412:297–304PubMedCrossRefGoogle Scholar
  15. Ashford MLJ, Boden PR, Treherne JM (1990a) Glucose-induced excitation of hypothalamic neurones is mediated by ATP sensitive K+ channels. Pflügers Arch 415:479–483PubMedCrossRefGoogle Scholar
  16. Ashford MLJ, Boden PR, Treherne JM (1990b) Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br J Pharmacol 101:531–540PubMedCrossRefGoogle Scholar
  17. Ashford MLJ, Bond CT, Blair TA, Adelman JP (1994) Cloning and functional expression of a rat heart KATP channel. Nature 370:456–459PubMedCrossRefGoogle Scholar
  18. Aumüller W, Heerdt R (1971) Sulfonylharnstoffderivate und verwandte Verbindungen als blutzuckersenkende Substanzen. In: Maske H (ed) Oral wirksame Antidiabetika. Springer, Berlin Heidelberg New York, pp 1–249 (Handbook of experimental pharmacology, vol 29)CrossRefGoogle Scholar
  19. Beck-Nielsen H, Hother-Nielsen O, Pedersen O (1988) Mechanism of action of sulphonylureas with special reference to the extrapancreatic effect: an overview. Diabet Med 5:613–620PubMedCrossRefGoogle Scholar
  20. Beech DJ, Zhang H, Nakao K, Bolton TB (1993) K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br J Pharmacol 110:573–582PubMedCrossRefGoogle Scholar
  21. Belles B, Hescheler J, Trube G (1987) Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflügers Arch 409:582–588PubMedCrossRefGoogle Scholar
  22. Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification, and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sci USA 85:9816–9820PubMedCrossRefGoogle Scholar
  23. Bernardi H, Fosset M, Lazdunski M (1992) ATP/ADP binding sites are present in the sulfonylurea binding protein asociated with brain ATP-sensitive K+ channels. Biochemistry 31:6328–6332PubMedCrossRefGoogle Scholar
  24. Bernardi H, De Weille JR, Epelbaum J, Mourre C, Amoroso S, Slama A, Fosset M, Lazdunski M (1993) ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc Natl Acad Sci USA 90:1340–1344PubMedCrossRefGoogle Scholar
  25. Bokvist K, Rorsman P, Smith PA (1990) Block of ATP-regulated and Ca2+-activated K+-channels in mouse pancreatic β-cells by external tetraethylammonium and quinine. J Physiol (Lond) 423:327–343Google Scholar
  26. Bouman PR, Gaarenstroom JH (1961) Stimulation by carbutamide and tolbutamide of insulin release from rat pancreas in vitro. Metabolism 10:1095–1099PubMedGoogle Scholar
  27. Boyd AE III (1988) Sulfonylurea receptors, ion channels and fruit flies. Diabetes 37:847–850PubMedCrossRefGoogle Scholar
  28. Boyd AE III, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Recent Prog Horm Res 47:299–317PubMedGoogle Scholar
  29. Brown GR, Foubister AJ (1984) Receptor binding sites of hypoglycemic sulfonylureas and related [(acylamino) alkyl] benzoic acids. J Med Chem 27:79–81PubMedCrossRefGoogle Scholar
  30. Carpentier J-L, Sawano F, Ravazzola M, Malaisse WJ (1986) Internalization of 3H-glibenclamide in pancreatic islet cells. Diabetologia 29:259–261PubMedCrossRefGoogle Scholar
  31. Chiba T, Taminato T, Kadowaki S, Chihara K, Matsukura S, Scino Y, Fujita T (1982) Tolbutamide stimulates gastric somatostatin release from isolated perfused rat stomach. Diabetes 31:119–121PubMedCrossRefGoogle Scholar
  32. Chudziak F, Schwanstecher M, Laatsch H, Panten U (1994) Synthesis of a 125I labelled azidosubstituted glibenclamide analogue for photoaffinity labelling of the sulfonylurea receptor. J Labelled Compd Radiopharm 34:675–680CrossRefGoogle Scholar
  33. Coetzee WA (1992) ATP-sensitive potassium channels and myocardial ischemia: why do they open? Cardiovasc Drugs Ther 6:201–208PubMedCrossRefGoogle Scholar
  34. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+-channels in pancreatic B-cells. Nature 311:271–173PubMedCrossRefGoogle Scholar
  35. Cook DL, Satin LB, Ashford MLJ, Hales CN (1988) ATP-sensitive K+ channels in pancreatic β-cells. Spare channel hypothesis. Diabetes 37:495–498PubMedCrossRefGoogle Scholar
  36. Cooper DR, Vila MC, Watson JE, Nair G, Pollet RJ, Standaert M, Farese RV (1990) Sulfonylurea-stimulated glucose transport association with diacylglycerol-like activation of protein kinase C in BC3H1 myocytes. Diabetes 39:1399–1407PubMedCrossRefGoogle Scholar
  37. Coore HG, Randle PJ (1964) Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem J 93:66–78PubMedGoogle Scholar
  38. Davies NW, Standen NB, Stanfield PR (1991) ATP-dependent potassium channels of muscle cells: their properties, regulation, and possible functions, J Bioenerg Biomembr 23:509–535CrossRefGoogle Scholar
  39. Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219:389–390PubMedCrossRefGoogle Scholar
  40. Deutsch N, Weiss JN (1994) Effects of trypsin on cardiac ATP-sensitive K+ channels. Am J Physiol 266:H613–H622Google Scholar
  41. De Weille JR, Fosset M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M (1989) Pharmacology and regulation of ATP-sensitive K+ channels. Pflügers Arch 414:S80–S87CrossRefGoogle Scholar
  42. De Weille JR, Müller M, Lazdunski M (1992) Activation and inhibition of ATP-sensitive K+ channels by fluorescein derivatives. J Biol Chem 267:4557–4563PubMedGoogle Scholar
  43. Dunne MJ (1989) Protein phosphorylation is required for diazoxide to open ATP-sensitive potassium channels in insulin (RINm5F) secreting cells. FEBS Lett 250:262–266PubMedCrossRefGoogle Scholar
  44. Dunne MJ, Petersen OH (1991) Potassium selective ion channels in insulin-secreting cells: physiology, pharmacology and their role in stimulus-secretion coupling. Biochim Biophys Acta 1071:67–82PubMedCrossRefGoogle Scholar
  45. Edwards G, Weston AH (1993) The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 33:597–637PubMedCrossRefGoogle Scholar
  46. Ferner RE, Chaplin S (1987) The relationship between the pharmacokinetics and pharmacodynamic effects of oral hypoglycaemic drugs. Clin Pharmacokinet 12:379–401PubMedCrossRefGoogle Scholar
  47. Findlay I (1987) The effects of magnesium upon adenosine triphosphate-sensitive potassium channels in a rat insulin-secreting cell line. J Physiol (Lond) 391: 611–629Google Scholar
  48. Findlay I (1992a) Inhibition of ATP-sensitive K+ channels in cardiac muscle by the sulphonylurea drug glibenclamide. J Pharmacol Exp Ther 261:540–545PubMedGoogle Scholar
  49. Findlay I (1992b) Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther 262:71–79PubMedGoogle Scholar
  50. Findlay I (1993) Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. J Pharmacol Exp Ther 266:456–467PubMedGoogle Scholar
  51. Flatt PR, Shibier O, Szecowka J, Berggren P-O (1994) New perspectives on the actions of sulphonylureas and hyperglycaemic sulphonamides on the pancreatic β-cell. Diabete Metab 20:157–162PubMedGoogle Scholar
  52. Flockhart DA, Corbin JD (1982) Regulatory mechanisms in the control of protein kinases. Crit Rev Biochem 12:133–186CrossRefGoogle Scholar
  53. Forestier C, Vivaudou M (1993) Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle. J Membr Biol 132:87–94PubMedGoogle Scholar
  54. Fosset M, De Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski M (1988) Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem 263:7933–7936PubMedGoogle Scholar
  55. Fujitani S, Yada T (1994) A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic β-cells by stimulating Ca2+ influx. Endocrinology 134:1395–1400PubMedCrossRefGoogle Scholar
  56. Gaines KL, Hamilton S, Boyd AE III (1988) Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 263:2589–2592PubMedGoogle Scholar
  57. Garrino M-G, Schmeer W, Nenquin M, Meissner HP, Henquin JC (1985) Mechanism of the stimulation of insulin release in vitro by HB 699, a benzoic acid derivative similar to the non-sulphonylurea moiety of glibenclamide. Diabetologia 28: 697–703PubMedCrossRefGoogle Scholar
  58. Geisen K, Hübner M, Hitzel V, Hrstka VE, Pfaff W, Bosies E, Regitz G, Kühnle HF, Schmidt FH, Weyer R (1978) Acylaminoalkyl-substituierte Benzoe- und Phenylalkansäuren mit blutglukose-senkender Wirkung. Arzneimittelforschung 28:1081–1083PubMedGoogle Scholar
  59. Geisen K, Hitzel V, Ökomonopoulos R, Pünter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneimittelforschung 35:707–712PubMedGoogle Scholar
  60. Gerich JE (1989) Oral hypoglycemic agents. N Engl J Med 321:1231–1245PubMedCrossRefGoogle Scholar
  61. Gopalakrishnan M, Johnson DE, Janis RA, Triggle DJ (1991) Characterization of binding of the ATP-sensitive potassium channel ligand, [3H]glyburide, to neuronal and muscle preparations. J Pharmacol Exp Ther 257:1162–1171PubMedGoogle Scholar
  62. Gopalakrishnan M, Janis RA, Triggle DJ (1993) ATP-sensitive K+ channels: pharmacologic properties, regulation, and therapeutic potential. Drug Devel Res 28:95–127CrossRefGoogle Scholar
  63. Gorus FK, Schuit FC, In’t Veld PA, Gepts W, Pipeleers DG (1988) Interaction of sulfonylureas with pancreatic β-cells. Diabetes 37:1090–1095PubMedCrossRefGoogle Scholar
  64. Ghosh A, Ronner P, Cheong E, Khalid P, Matschinsky FM (1991) The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet β-cells in the isolated perfused rat pancreas. J Biol Chem 266:22887–22892PubMedGoogle Scholar
  65. Gross GJ, Auchampach JA (1992) Role of ATP dependent potassium channels in myocardial ischaemia. Cardiovasc Res 26:1011–1016PubMedCrossRefGoogle Scholar
  66. Guiot Y, Henquin JC, Rahier J (1994) Effects of glibenclamide on pancreatic β-cell proliferation in vivo. Eur J Pharmacol 261:157–161PubMedCrossRefGoogle Scholar
  67. Gumerlock MK (1989) Cerebrovascular disease and the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 2. Plenum, New York, pp 495–565CrossRefGoogle Scholar
  68. Gylfe E, Hellman B, Sehlin J, Täljedal I-B (1984) Interaction of sulfonylurea with the pancreatic B-cell. Experientia 40:1126–1134PubMedCrossRefGoogle Scholar
  69. Hamada E, Takikawa R, Ito H, Iguchi M, Terano A, Sugimoto T, Kurachi Y (1990) Glibenclamide specifically blocks ATP-sensitive K channel current in atrial myocytes of guinea pig heart. Jpn J Pharmacol 54:473–477PubMedCrossRefGoogle Scholar
  70. Hellman B, Täljedal I-B (1975) Effects of sulfonylurea derivatives on pancreatic &#x03B2-cells. In: Hasselblatt A, von Bruchhausen F (eds) Insulin II. Springer, Berlin Heidelberg New York, pp 175–194 (Handbook of experimental pharma cology, vol 32/2)CrossRefGoogle Scholar
  71. Henquin JC (1980) Tolbutamide stimulation and inhibition of insulin release: studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151–160PubMedCrossRefGoogle Scholar
  72. Henquin JC (1987) Regulation of insulin release by ionic and electrical events in B cells. Horm Res 27:168–178PubMedCrossRefGoogle Scholar
  73. Henquin JC (1988) ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B-cells. Biochem Biophys Res Commun 156:769–775PubMedCrossRefGoogle Scholar
  74. Henquin JC (1990a) Glucose-induced electrical activity in β-cells. Feedback control of ATP-sensitive K+ channels by Ca2+. Diabetes 39:1457–1460PubMedCrossRefGoogle Scholar
  75. Henquin JC (1990b) Established, unsuspected and novel pharmacological insulin secretagogues. In: Bailey CJ, Flatt PR (eds) New antidiabetic drugs. Smith-Gordon, London, pp 93–106Google Scholar
  76. Henquin JC (1992) The fiftieth anniversary of hypoglycaemic sulphonamides. How did the mother compound work? Diabetologia 35:907–912PubMedCrossRefGoogle Scholar
  77. Henquin JC, Garrino M-G, Nenquin M (1987) Stimulation of insulin release by benzoic acid derivatives related to the non-sulphonylurea moiety of glibenclamide: structural requirements and cellular mechanisms. Eur J Pharmacol 141:243–251PubMedCrossRefGoogle Scholar
  78. Heurteaux C, Bertaina V, Widmann C, Lazdunski M (1993) K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid β-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci USA, 90:9431–9435PubMedCrossRefGoogle Scholar
  79. Hicks GA, Hudson AL, Henderson G (1994) Localization of high affinity [3H]gli-benclamide binding sites within the substantia nigra zona reticulata of the rat brain. Neuroscience 61:285–292PubMedCrossRefGoogle Scholar
  80. Hirose H, Maruyama H, Ito K, Seto Y, Kido K, Koyama K, Dan K, Saruta T, Kato R (1994) Effects of N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166) on insulin and glucagon secretion in isolated perfused rat pancreas. Pharmacology 48:205–210PubMedCrossRefGoogle Scholar
  81. Janigro D, West GA, Gordon EL, Winn HR (1993) ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol 265:C812–C821Google Scholar
  82. Jiang C, Xia Y, Haddad GG (1992) Role of ATP-sensitive K+ channels during anoxia: major differences between rat (newborn and adult) and turtle neurons. J Physiol (Lond) 448:599–612Google Scholar
  83. Jiang C, Sigworth FJ, Haddad GG (1994) Oxygen deprivation activates on ATP-inhibitable K+ channel in substantia nigra neurons. J Neurosci 14:5590–5602PubMedGoogle Scholar
  84. Jonas P, Koh D-S, Kampe K, Hermsteiner M, Vogel W (1991) ATP-sensitive and Ca-activated K channels in vertebrate axons: novel links between metabolism and excitability. Pflügers Arch 418:68–73PubMedCrossRefGoogle Scholar
  85. Kajioka S, Oike M, Kitamura K (1990) Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther 254:905–913PubMedGoogle Scholar
  86. Kajioka S, Kitamura K, Kuriyama H (1991) Guanosine diphosphate activates an adenosine 5’-triphosphate-sensitive K+ channel in the rabbit portal vein. J Physiol (Lond) 444:397–418Google Scholar
  87. Kaubisch N, Hammer R, Wollheim C, Renold AE, Offord RE (1982) Specific receptors for sulfonylureas in brain and in a β-cell tumor of the rat. Biochem Pharmacol 31:1171–1174PubMedCrossRefGoogle Scholar
  88. Kellner H-M, Christ O, Rupp W, Heptner W (1969) Resorption, Verteilung und Ausscheidung nach Gabe von 14C-markiertem HB 419 an Kaninchen, Ratten und Hunde. Arzneimittelforschung 19:1388–1400PubMedGoogle Scholar
  89. Khan RN, Hales CN, Ozanne SE, Adogu AA, Ashford MLJ (1993) Dissociation of KATP channel and sulphonylurea receptor in the clonal insulin-secreting cell line, CR-D11. Proc R Soc Lond [Biol] 253:225–231CrossRefGoogle Scholar
  90. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826Google Scholar
  91. Kolb KH, Schulze PE, Speck U, Acksteiner B (1974) Pharmakokinetik von radioaktiv markiertem Glisoxepid beim Tier. Arzneimittelforschung 24:397–403PubMedGoogle Scholar
  92. Kovacs RJ, Nelson MT (1991) ATP-sensitive K+channels from aortic smooth muscle incorporated into planar lipid bilayers. Am J Physiol 261:H604–H609Google Scholar
  93. Kozlowski RZ, Ashford MLJ (1990) ATP-sensitive K+ channel run-down is Mg2+ dependent. Proc R Soc [Biol] 240:397–410CrossRefGoogle Scholar
  94. Kozlowski RZ, Ashford MLJ (1991) Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells. Br J Pharmacol 103:2021–2029PubMedCrossRefGoogle Scholar
  95. Kozlowski RZ, Hales CN, Ashford MLJ (1989) Dual effects of diazoxide on ATP- K+ currents recorded from an insulin-secreting cell line. Br J Pharmacol 97: 1039–1050PubMedCrossRefGoogle Scholar
  96. Kramer W, Oekonomopulos R, Pünter J, Summ H-D (1988) Direct photoaffinity labeling of the putative sulfonylurea receptor in rat β-cell tumor membranes by [3H]glibenclamide. FEBS Lett 229:355–359PubMedCrossRefGoogle Scholar
  97. Kramer W, Müller G, Girbig F, Gutjahr U, Kowalewski S, Hartz D, Summ H-D (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor. II. Photoaffinity labeling of a 65kDa protein by [3H]glimepiride. Biochim Biophys Acta 1191:278–290PubMedCrossRefGoogle Scholar
  98. Kuroiwa T, Shibutani M, Okeda R (1988) Blood-brain barrier disruption and exacerbation of ischemic brain edema after restoration of blood flow in experimental focal cerebral ischemia. Acta Neuropathol (Berl) 76:62–70CrossRefGoogle Scholar
  99. Larsson O, Ämmälä C, Bokvist K, Fredholm B, Rorsman P (1993) Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic β-cells. J Physiol (Lond) 463:349–365Google Scholar
  100. Laychock SG (1983) Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans. Biochem J 216:101–106PubMedGoogle Scholar
  101. Lebovitz HE (1990) Oral hypoglycemic agents. In: Ellenberg M (ed) Diabetes mellitus “theory and practice.” Elsevier, Amsterdam, pp 554–574Google Scholar
  102. Lee K, Ashford MLJ (1993) Mg2+ modulates the binding of [3H]glibenclamide to its receptor in rat cerebral cortical membranes. Eur J Pharmacol 247:347–351PubMedCrossRefGoogle Scholar
  103. Lee K, Ozanne SE, Hales CN, Ashford MLJ (1994a) Mg2+-dependent inhibition of KATP by sulphonylureas in CRI-G1 insulin-secreting cells. Br J Pharmacol 111:632–640PubMedCrossRefGoogle Scholar
  104. Lee K, Ozanne SE, Hales CN, Ashford MLJ (1994b) Effects of chemical modification of amino and sulfhydryl groups on KATP channel function and sulfonylurea binding in CRI-G1 insulin-secreting cells. J Membr Biol 139:167–181PubMedGoogle Scholar
  105. Lee K, Ozanne SE, Rowe ICM, Hales CN, Ashford MLJ (1994c) The effects of trypsin on ATP-sensitive potassium channel properties and sulfonylurea receptors in the CRI-G1 insulin-secreting cell line. Mol Pharmacol 45:176–185Google Scholar
  106. Light PE, Comtois AS, Renaud JM (1994) The effect of glibenclamide on frog skeletal muscle: evidence for K+ ATP channel activation during fatigue. J Physiol (Lond) 475:495–507Google Scholar
  107. Lin Y-J, Greif GJ, Freedman JE (1993) Multiple sulfonylurea-sensitive potassium channels: a novel subtype modulated by dopamine. Mol Pharmacol 44:907–910PubMedGoogle Scholar
  108. Loubatières A (1957a) The hypoglycemic sulfonamides: history and development of the problem from 1942 to 1955. Ann NY Acad Sci 71:4–11PubMedCrossRefGoogle Scholar
  109. Loubatières A (1957b) The mechanism of action of the hypoglycemic sulfonamides: a concept based on investigations in animals and in human beings. Ann NY Acad Sci 71:192–206PubMedCrossRefGoogle Scholar
  110. Loubatières A (1977) Effects of sulfonylureas on the pancreas. In: Volk BW, Wellmann KF (eds) The diabetic pancreas. Plenum New York, pp 489–515CrossRefGoogle Scholar
  111. Loubatières A, Mariani MM, Ribes G, de Malbosc H, Alric R, Chapal J (1969) Pharmakologische Untersuchungen eines neuen hochwirksamen blutzuckersenkenden Sulfonamids, des Glibenclamid (HB 419). Arzneimittelforschung 19: 1334–1363Google Scholar
  112. Lupo B, Bataille D (1987) A binding site for [3H]glipizide in the rat cerebral cortex. Eur J Pharmacol 140:157–169PubMedCrossRefGoogle Scholar
  113. Lynch JJ, Sanguinetti MC, Kimura S, Bassett AL (1992) Therapeutic potential of modulating potassium currents in the diseased myocardium. FASEB J 6: 2952–2960PubMedGoogle Scholar
  114. Malaisse WJ, Lebrun P (1990) Mechanisms of sulfonylurea-induced insulin release. Diabetes Care 13:9–17PubMedCrossRefGoogle Scholar
  115. Malaisse WJ, Malaisse-Lagae F, Mayhew DA, Wright PH (1967) Effects of sulfonylureas upon insulin secretion by the rat’s pancreas. In: Butterfield WJH, von Westering W (eds) Tolbutamide after ten years. Excerpta Medica, Amsterdam, pp 49–60Google Scholar
  116. Malaisse WJ, Hubinont C, Lebrun P, Herchuelz A, Couturier E, Deleers M, Malaisse-Lagae F, Sener A (1983) Mode of action of hypoglycaemic sulfonylureas in the pancreatic β-cell: coinciding and conflicting views. In: Serrano-Rios M, Krall LP (eds) Clinical and pharmacological activities of sulfonylurea drugs. Excerpta Medica, Amsterdam, pp 24–38Google Scholar
  117. Maloff BL, Lockwood DH (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J Clin Invest 68:85–90PubMedCrossRefGoogle Scholar
  118. Martz A, Jo I, Jung CY (1989) Sulfonylurea binding to adipocyte membranes and potentiation of insulin-stimulated hexose transport. J Biol Chem 264: 13672–13678PubMedGoogle Scholar
  119. Matthews EK (1985) Electrophysiology of pancreatic islet β-cells. In: Poisner AM, Trifaro JM (eds) the electrophysiology of the secretory cell. Elsevier, Amsterdam, pp 93–112Google Scholar
  120. Matthews EK, Dean PM, Sakamoto Y (1973) Biophysical effects of sulphonylureas on islet cells. In: Acheson GH (ed) Pharmacology and the future of man. Proc 5th Int Congr Pharmacology, San Francisco 1972, vol 3. Karger, Basel, pp 221–229Google Scholar
  121. Melander A, Bitzén P-O, Faber O, Groop L (1989) Sulphonylurea antidiabetic drugs. An update of their clinical pharmacology and rational therapeutic use. Drugs 37:58–72PubMedCrossRefGoogle Scholar
  122. Mogami H, Shibata H, Nobusawa R, Ohnota H, Satou F, Miyazaki J, Kojima I (1994) Inhibition of ATP-sensitive K+ channel by a non-sulfonylurea compound KAD-1229 in a pancreatic β-cell line, MIN 6 cell. Eur J Pharmacol 269:293–298PubMedCrossRefGoogle Scholar
  123. Mourre C, Widmann C, Lazdunski M (1990) Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum. Brain Res 519:29–43PubMedCrossRefGoogle Scholar
  124. Müller M, de Weille JR, Lazdunski M (1991) Chlorpromazine and related phenothiazines inhibit the ATP-sensitive K+ channel. Eur J Pharmacol 198:101–104PubMedCrossRefGoogle Scholar
  125. Müller G, Hartz D, Pünter J, Ökonomopulos R, Kramer W (1994a) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277PubMedCrossRefGoogle Scholar
  126. Müller G, Korndörfer A, Kornak U, Malaisse WJ (1994b) Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride. Arch Biochem Biophys 308:8–23PubMedCrossRefGoogle Scholar
  127. Nelson DA, Aguilar-Bryan L, Bryan J (1992) Specificity of photolabeling of β-cell membrane proteins with an l25I-labeled glyburide analog. J Biol Chem 267: 14928–14933PubMedGoogle Scholar
  128. Nichols CG, Lederer WJ (1991) Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 261:H1675–H1686Google Scholar
  129. Nichols CG, Lopatin AN (1993) Trypsin and alpha-chymotrypsin treatment abolishes glibenclamide sensitivity of KATP channels in rat ventricular myocytes. Pflügers Arch 422:617–619PubMedCrossRefGoogle Scholar
  130. Niki I, Ashcroft SJH (1991) Possible involvement of protein phosphorylation in the regulation of the sulfonylurea receptor of a pancreatic β-cell line, HIT T15. Biochim Biophys Acta 1133:95–101PubMedCrossRefGoogle Scholar
  131. Niki I, Ashcroft SJH (1993) Characterization and solubilization of the sulphonylurea receptor in rat brain. Neuropharmacology 32:951–957PubMedCrossRefGoogle Scholar
  132. Niki I, Kelly RP, Ashcroft SJH, Ashcroft FM (1989) ATP-sensitive K-channels in HIT T15 β-cells studied by patch-clamp methods, 86Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55PubMedCrossRefGoogle Scholar
  133. Niki I, Nicks JL, Ashcroft SJH (1990) The β-cell glibenclamide receptor is an ADP- binding protein. Biochem J 268:713–718PubMedGoogle Scholar
  134. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148PubMedCrossRefGoogle Scholar
  135. Ohno-Shosaku T, Yamamoto C (1992) Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflügers Arch 422:260–266PubMedCrossRefGoogle Scholar
  136. Ohno-Shosaku T, Zünkler BJ, Trube G (1987) Dual effects of ATP on K+ currents of mouse pancreatic β-cells. Pflügers Arch 408:133–138PubMedCrossRefGoogle Scholar
  137. Ohnota H, Koizumi T, Tsutsumi N, Kobayashi M, Inoue S, Sato F (1994) Novel rapid and short-acting hypoglycemic agent, a calcium (2s)-2-benzyl-3-(cis-hexahydro-2-isoindolinyl-carbonyl)propionate (KAD-1229) that acts on the sulfonylurea receptor: comparison of effects between KAD-1229 and gliclazide. J Pharmacol Exper Ther 269:489–495Google Scholar
  138. Panten U, Lenzen S (1988) Alterations in energy metabolism of secretory cells. In: Akkerman J-W N (ed) Energetics of secretion responses, vol 2. CRC Press, Boca Raton, pp 109–123Google Scholar
  139. Panten U, Zünkler BJ, Scheit S, Kirchhoff K, Lenzen S (1986) Regulation of energy metabolism in pancreatic islets by glucose and tolbutamide. Diabetologia 29: 648–654PubMedCrossRefGoogle Scholar
  140. Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zünkler BJ, Lenzen S (1989) Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem Pharmacol 38:1217–1229PubMedCrossRefGoogle Scholar
  141. Panten U, Heipel C, Rosenberger F, Scheffer K, Zünkler BJ, Schwanstecher C (1990) Tolbutamide-sensitivity of the adenosine 5’-triphosphate-dependent K+ channel in mouse pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol 342:566–574PubMedCrossRefGoogle Scholar
  142. Panten U, Schwanstecher M, Schwanstecher C (1992) Pancreatic and extrapancreatic sulfonylurea receptors. Horm Metab Res 24:549–554PubMedCrossRefGoogle Scholar
  143. Panten U, Schwanstecher C, Schwanstecher M (1993) ATP-sensitive K+ channel: properties, occurrence, role in regulation of insulin secretion. In: Dickey BF, Birnbaumer L (eds) GTPases in biology II. Springer, Berlin Heidelberg New York, pp 547–559 (Handbook of experimental pharmacology, vol 108/11)CrossRefGoogle Scholar
  144. Parent L, Coronado R (1989) Reconstitution of the ATP-sensitive potassium channel of skeletal muscle. J Gen Physiol 94:445–463PubMedCrossRefGoogle Scholar
  145. Penner R, Pusch M, Neher E (1987) Washout phenomena in dialyzed mast cells allow discrimination of different steps in stimulus-secretion coupling. Biosci Rep 7:313–321PubMedCrossRefGoogle Scholar
  146. Petit P, Loubatières-Mariani MM (1992) Potassium channels of the insulin-secreting B cell. Fundam Clin Pharmacol 6:123–134PubMedCrossRefGoogle Scholar
  147. Pfründer D, Anghelescu I, Kreye VAW (1993) Intracellular ADP activates ATP-sensitive K+ channels in vascular smooth muscle cells of the guinea pig portal vein. Pflügers Arch 423:149–151PubMedCrossRefGoogle Scholar
  148. Politi DMT, Rogawski MA (1991) Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by cromakalim and energy-depleting conditions. Mol Pharmacol 40:308–315PubMedGoogle Scholar
  149. Proks P, Ashcroft FM (1993) Modification of K-ATP channels in pancreatic β-cells by trypsin. Pflügers Arch 424:63–72PubMedCrossRefGoogle Scholar
  150. Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch 411:204–211PubMedCrossRefGoogle Scholar
  151. Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Kunze DL, Boyd AE III (1990) Ion channels and insulin secretion. Diabetes Care 13:340–363PubMedCrossRefGoogle Scholar
  152. Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic a cells. J Biol Chem 268:15221–15228PubMedGoogle Scholar
  153. Ronner P, Hang TL, Kraebber MJ, Higgins TJ (1992) Effect of the hypoglycaemic drug (-)-AZ-DF-265 on ATP-sensitive potassium channels in rat pancreatic ß-cells. Br J Pharmacol 106:250–255PubMedCrossRefGoogle Scholar
  154. Ronner P, Matschinsky FM, Hang TL, Epstein AJ, Buettger C (1993) Sulfonylurea-binding sites and ATP-sensitive K+ channels in α-TC glucagonoma and β-TC insulinoma cells. Diabetes 42:1760–1772PubMedCrossRefGoogle Scholar
  155. Rorsman P, Hellman B (1988) Voltage-activated currents in guinea pig pancreatic a 2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 91:223–242PubMedCrossRefGoogle Scholar
  156. Saha S, Hellman B (1994) Sulfonylureas mimic glucose in stimulating the uptake of Na+ in pancreatic islets exposed to ouabain. Eur J Pharmacol 258:145–149PubMedCrossRefGoogle Scholar
  157. Schmid-Antomarchi H, De Weille J, Fosset M, Lazdunski M (1987) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem 262:15840–15844PubMedGoogle Scholar
  158. Schwanstecher C, Panten U (1993a) Tolbutamide- and diazoxide-sensitive K+ channel in neurons of substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol 348:113–117PubMedCrossRefGoogle Scholar
  159. Schwanstecher M, Panten U (1993b) Protein phosphorylation regulates receptor binding of potassium channel openers in insulin secreting cells and cerebral cortex. Biol Chem Hoppe Seyler 374:151Google Scholar
  160. Schwanstecher C, Panten U (1994) Identification of an ATP-sensitive K+ channel in spiny neurons of rat caudate nucleus. Pflügers Arch 427:187–189PubMedCrossRefGoogle Scholar
  161. Schwanstecher M, Rietze I (1990) Hydrolyzable nucleotides inhibit glibenclamide binding in pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol 341:R72Google Scholar
  162. Schwanstecher M, Löser S, Rietze I, Panten U (1990) Mg2+ATP controls gliben-clamide- and diazoxide-binding to their receptor in pancreatic B-cells. Diabetologia 33:A78Google Scholar
  163. Schwanstecher M, Löser S, Rietze I, Panten U (1991) Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol 343:83–89PubMedCrossRefGoogle Scholar
  164. Schwanstecher C, Dickel C, Panten U (1992a) Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors. Mol Pharmacol 41:480–486PubMedGoogle Scholar
  165. Schwanstecher C, Dickel C, Ebers I, Lins S, Zünkler BJ, Panten U (1992b) Diazoxide-sensitivity of the adenosine 5’-triphosphate dependent K+ channel in mouse pancreatic β-cells. Br J Pharmacol 107:87–94PubMedCrossRefGoogle Scholar
  166. Schwanstecher M, Behrends S, Brandt C, Panten U (1992c) The binding properties of the solubilized sulfonylurea receptor from a pancreatic B-cell line are modulated by the Mg++-complex of ATP. J Pharmacol Exper Ther 262:495–502Google Scholar
  167. Schwanstecher M, Brandt C, Behrends S, Schaupp U, Panten U (1992d) Effect of MgATP on pinacidil-induced displacement of glibenclamide from the sulphonylurea receptor in a pancreatic β-cell line and rat cerebral cortex. Br J Pharmacol 106:295–301PubMedCrossRefGoogle Scholar
  168. Schwanstecher M, Löser S, Brandt Ch, Scheffer K, Rosenberger F, Panten U (1992e) Adenine nucleotide-induced inhibition of binding of sulphonylureas to their receptor in pancreatic islets. Br J Pharmacol 105:531–534PubMedCrossRefGoogle Scholar
  169. Schwanstecher M, Schaupp U, Löser S, Panten U (1992f) The binding properties of the particulate and solubilized sulfonylurea receptor from cerebral cortex are modulated by the Mg2+ complex of ATP. J Neurochem 59:1325–1335PubMedCrossRefGoogle Scholar
  170. Schwanstecher C, Dickel C, Panten U (1994a) Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse ß-cells. Br J Pharmacol 111:302–310PubMedCrossRefGoogle Scholar
  171. Schwanstecher M, Löser S, Chudziak F, Bachmann C, Panten U (1994b) Photo-affinity labeling of the cerebral sulfonylurea receptor using a novel radioiodinated azidoglibenclamide analogue. J Neurochem 63:698–708PubMedCrossRefGoogle Scholar
  172. Schwanstecher M, Löser S, Chudziak F, Panten U (1994c) Identification of a 38-kDa high affinity sulfonylurea-bending peptide in insulin-secreting cells and cerebral cortex. J Biol Chem 269:17768–17771PubMedGoogle Scholar
  173. Schwanstecher M, Männer K, Panten U (1994d) Inhibition of K+ channels and stimulation of insulin secretion by the sulfonylurea, glimepiride, in relation to its membrane binding in pancreatic islets. Pharmacology 49:105–111PubMedCrossRefGoogle Scholar
  174. Schwanstecher M, Schwanstecher C, Dickel C, Chudziak F, Moshiri A, Panten U (1994e) Location of the sulphonylurea receptor at the cytoplasmic face of the 03B2-cell membrane. Br J Pharmacol 113:903–911PubMedCrossRefGoogle Scholar
  175. Schwanstecher M, Bachmann C, Löser S, Panten U (1995) Interaction of fluorescein derivatives with sulfonylurea binding in insulin-secreting cells. Pharmacology 50:182–191PubMedCrossRefGoogle Scholar
  176. Sellers AJ, Boden PR, Ashford MLJ (1992) Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones. Br J Pharmacol 107:1068–1074PubMedCrossRefGoogle Scholar
  177. Siconolfi-Baez L, Banerji MA, Lebovitz HE (1990) Characterization and significance of sulfonylurea receptors. Diabetes Care 13 [Suppl 3]:2–8PubMedGoogle Scholar
  178. Skeer JM, Degano P, Coles B, Potier M, Ashcroft FM, Ashcroft SJH (1994) Determination of the molecular mass of the native beta-cell sulfonylurea receptor. FEBS Lett 338:98–102PubMedCrossRefGoogle Scholar
  179. Skillman TG, Feldman JM (1981) The pharmacology of sulfonylureas. Am J Med 70:361–372PubMedCrossRefGoogle Scholar
  180. Spruce AE, Standen NB, Stanfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316:736–738PubMedCrossRefGoogle Scholar
  181. Spruce AE, Standen NB, Stanfield PR (1987) Studies of the unitary properties of adenosine-5’-triphosphate-regulated potassium channels of frog skeletal muscle. J Physiol 382:213–236PubMedGoogle Scholar
  182. Sturgess NC, Ashford MLJ, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 8453:474–475CrossRefGoogle Scholar
  183. Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MLJ (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 95:83–94PubMedCrossRefGoogle Scholar
  184. Sugita O, Sawada Y, Sugiyama Y, Iga T, Hanano M (1982) Physiologically based pharmacokinetics of drug-drug interaction: a study of tolbutamide-sulfonamide interaction in rats. J Pharmacokinet Biopharm 10:297–316PubMedCrossRefGoogle Scholar
  185. Takano M, Noma A (1993) The ATP-sensitive K+ channel. Prog Neurobiol 41:21–30PubMedCrossRefGoogle Scholar
  186. Taylor KW, Parry DG (1967) Tolbutamide and the incorporation of [3H]leucine into insulin in vitro. J Endocrinol 39:457–458CrossRefGoogle Scholar
  187. Tromba C, Salvaggio A, Racagni G, Volterra A (1992) Hypoglycemia-activated K+ channels in hippocampal neurons. Neurosci Lett 143:185–189PubMedCrossRefGoogle Scholar
  188. Tromba C, Salvaggio A, Racagni G, Volterra A (1994) Hippocampal hypoglycaemia-activated K+ channels: single-channel analysis of glucose and voltage dependence. Pflügers Arch 429:58–63PubMedCrossRefGoogle Scholar
  189. Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic B-cells. Pflügers Arch 407:493–499PubMedCrossRefGoogle Scholar
  190. Trube G, Hescheler J, Schröter K (1989) Regulation of ATP-dependent K+ channels in pancreatic B-cells. In: Oxford GS, Armstrong CM (eds) Secretion and its control, society of general physiologists series, vol 44. Rockefeller University Press, New York, pp 84–95Google Scholar
  191. Venkatesh N, Lamp ST, Weiss JN (1991) Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ Res 69:623–637PubMedCrossRefGoogle Scholar
  192. Verspohl EJ, Ammon HPT, Mark M (1990) Evidence for more than one binding site for sulfonylureas in insulin-secreting cells. J Pharm Pharmacol 42:230–235PubMedCrossRefGoogle Scholar
  193. Virág L, Furukawa T, Hiraoka M (1993) Modulation of the effect of glibenclamide on KATP channels by ATP and ADP. Mol Cell Biochem 119:209–215PubMedCrossRefGoogle Scholar
  194. Virsolvy-Vergine A, Leray H, Kuroki S, Lupo B, Dufour M, Bataille D (1992) Endosulfine, an endogenous peptidic ligand for the sulfonylurea receptor: purification and partial characterization from ovine brain. Proc Natl Acad Sci USA 89:6629–6633PubMedCrossRefGoogle Scholar
  195. Vivaudou MB, Arnoult C, Villaz M (1991) Skeletal muscle ATP-sensitive K+ channels recorded from sarcolemmal blebs of split fibers: ATP inhibition is reduced by magnesium and ADP. J Membr Biol 122:165–175PubMedCrossRefGoogle Scholar
  196. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. Biochem J 281:21–40PubMedGoogle Scholar
  197. Weik R, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. J Membr Biol 110: 217–226PubMedCrossRefGoogle Scholar
  198. Wilde AAM, Janse MJ (1994) Electrophysiological effects of ATP sensitive potassium channel modulation: implications for arrhythmogenesis. Cardiovasc Res 28:16–24PubMedCrossRefGoogle Scholar
  199. Woll KH, Lönnendonker U, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: different modes of blockage by internal cations, ATP and tolbutamide. Pflügers Arch 414:622–628PubMedCrossRefGoogle Scholar
  200. Xu X, Lee KS (1994) Characterization of the ATP-inhibited K+current in canine coronary smooth muscle cells. Pflügers Arch 427:110–120PubMedCrossRefGoogle Scholar
  201. Yalow RS, Black H, Villazon M, Berson SA (1960) Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes 9:356–362PubMedGoogle Scholar
  202. Yamato E, Ikegami H, Tahara Y, Fukuda M, Cha T, Kawaguchi Y, Fujioka Y, Noma Y, Shima K, Ogihara T (1993) Cellular mechanism of glyburide-induced insulin gene expression in isolated rat islets. Biochem Biophys Res Commun 197:957–964PubMedCrossRefGoogle Scholar
  203. Zawalich WS, Diaz VA, Zawalich KC (1988) Influence of cAMP and calcium on [3H]inositol efflux, inositol phosphate accumulation, and insulin release from isolated rat islets. Diabetes 37:1478–1483PubMedCrossRefGoogle Scholar
  204. Zini S, Ben-Ari Y, Ashford MLJ (1991) Characterization of sulfonylurea receptors and the action of potassium channel openers on cholinergic neurotransmission in guinea pig isolated small intestine. J Pharmacol Exp Ther 259:566–573PubMedGoogle Scholar
  205. Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (1988a) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol 337:225–230PubMedCrossRefGoogle Scholar
  206. Zünkler BJ, Lins S, Ohno-Shosaku T, Trube G, Panten U (1988b) Cytosolic ADP enhances the sensitivity to tolbutamide of ATP-dependent K+ channels from pancreatic B-cells. FEBS Lett 239:241–244PubMedCrossRefGoogle Scholar
  207. Zünkler BJ, Trube G, Panten U (1989) How do sulfonylureas approach their receptor in the B-cell plasma membrane? Naunyn Schmiedebergs Arch Pharmacol 340: 328–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • U. Panten
  • M. Schwanstecher
  • C. Schwanstecher

There are no affiliations available

Personalised recommendations