Skip to main content

Preclinical Pharmacology of Biguanides

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 119))

Abstract

Probably few classes of chemicals have generated as many publications as have the biguanides. In the previous review on the preclinical pharmacology of the biguanides in 1971, Beckmann discussed in great detail the pharmacological properties of mainly three biguanide derivatives: phenformin, buformin and metformin. Since that time, important changes have occurred in the form of an almost complete withdrawal of PHEN and BUF from the international markets. On the other hand, a large number of publications have appeared during the last 25 years, most of which have been oriented towards the elucidation of the mode of action of biguanides in diabetes. There are therefore new aspects which must now be considered, for example, prediabetic or non-diabetic insulin resistance, insulin receptor/cell-signaling effects and other properties of potential new applications such as vascular effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid R, Marquie G (1972) Effets inhibiteurs de certains biguanides antidiabétiques sur l’absorption intestinale des lipides. C R Acad Sci [III] 275:1787–1790

    CAS  Google Scholar 

  • Agid R, Marquie G (1973) The effect of metformin on lipid-induced atherosclerosis. Adv Metab Disord 2 [Suppl 2]:575–586

    PubMed  CAS  Google Scholar 

  • Alengrin F, Grossi G, Canivet B, Dolais-Kitabgi J (1987) Inhibitory effects of metformin on insulin and glucagon action in rat hepatocytes involve post-receptor alterations. Diabete Metab 13:591–598

    PubMed  CAS  Google Scholar 

  • Altschuld R, Kruger FA (1966) The mechanism of the hypoglycemic action of phenethylbiguanide (DBI). Clin Res 14:439

    Google Scholar 

  • Anfosso F, Chomiki N, Alessi MC, Vague P, Juhan-Vague I (1993) Plasminogen activator inhibitor-1 synthesis in the human hepatona cell line HepG2. J Clin Invest 91:2185–2193

    Article  PubMed  CAS  Google Scholar 

  • Argaud D, Roth H, Wiersperger N, Leverve XM (1993) Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem 213:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Back N, Wilkens H, Barlow B, Czarnecki J (1968) Fibrinolytic studies with biguanide derivatives. Ann NY Acad Sci 148:691–713

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ (1992) Biguanides and NIDDM. Diabetes Care 15:755–772

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ (1993) Metformin — an update. Gen Pharmacol 24:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Mynett KJ (1994) Insulin requirement for the antihyperglycemic effect of metformin. Br J Pharmacol 111:793–796

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Puah J (1986) Effect of metformin on glucose metabolism in mouse soleus muscle. Diabete Metab 12:212–218

    PubMed  CAS  Google Scholar 

  • Bailey CJ, Wilcock C, Day C, Turner S (1989) Metformin effects in transhepatic glucose and lactate concentrations. Diabetic Med 6 [Suppl 1]:A14

    Google Scholar 

  • Bailey CJ, Flatt PR, Wilcock C, Day C (1991a) Antihyperglycemic mechanism of action of metformin. In: Shafrir E (ed) Lessons from animal diabetes, vol 3. Smith-Gordon, London, pp 277–282

    Google Scholar 

  • Bailey CJ, Wilcock C, Wyer ND, Turner SL (1991b) Subcellular localization of metformin. Diabetologia 34 [Suppl 2]: 115

    Google Scholar 

  • Bailey CJ, Wilcock C, Day C (1992) Effect of metformin on glucose metabolism in the splanchnic bed. Br J Pharmacol 105:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Mynett KJ, Page T (1994) Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol 112:671 – 75

    Google Scholar 

  • Barnes AJ, Willars EJ, Clark PA, Hunt WB, Rampling M (1988) Effects of metformin on haemorheological indices in diabetes. Diabete Metab 14:608–609

    Google Scholar 

  • Baron A, Brechtel G (1993) Insulin differently regulates systemic and skeletal muscle vascular resistance. Am J Physiol 265:E61–E67

    PubMed  CAS  Google Scholar 

  • Barzilai N, Simonson D (1988) Mechanism of metformin action in NIDDM, Diabetes 37 [Suppl 1]:244

    Google Scholar 

  • Beckmann R (1965) Resorption Verteilung im Gewebe und Ausscheidung von 1-butyl-biguanid-[14C]-hydrochlorid. Arzneimittelforschung 15:761–764

    CAS  Google Scholar 

  • Beckmann R (1969) Resorption Verteilung im Organismus und Ausscheidung von Metformin. Diabetologia 5:318–324

    Article  PubMed  CAS  Google Scholar 

  • Beckmann R (1971) Biguanide (Experimenteller Teil). In: Maske H (ed) Oral wirksame Antidiabetika. Springier, Berlin Heidelberg New York, pp 439–596 (Handbook of Experimental Pharmacology, vol. 29)

    Chapter  Google Scholar 

  • Berger W, Kunzli H (1970) Effect of dimethylbiguanide on insulin glucose and lactive acid contents observed in portal vein blood and peripheral venous blood in the course of intraduodenal glucose tolerance tests. Diabetologia 6:37

    Google Scholar 

  • Berger W, Lauffenburger T, Denes A (1972) The effect of metformin on the absorption of vitamin B12. Horm Metab Res 4:311–312

    Article  PubMed  CAS  Google Scholar 

  • Bertuglia S, Coppini G, Colantuoni A (1988) Effects of metformin on arteriolar vasomotion in normal and diabetic Syrian hamsters. Diabete Metab 14:554–559

    Google Scholar 

  • Bertuglia S, Colantuoni A, Donato L (1989) Effects of metformin on microcirculation during hemorrhagic shock. Excerpta Med Int Congr Ser 868:1189–1194

    Google Scholar 

  • Bobbioni E, Coscelli C, Zavaroni I, Alpi O, Capretti L (1978) The effect of metformin on the insulin response in vivo and in vitro to arginine and glucose in the normal rat. Excerpta Med Int Congr Ser 454:353–358

    CAS  Google Scholar 

  • Bolinger RE, Mckee W, Davis JW (1960) Comparative effects of DBI and insulin on glucose uptake of rat diaphragm. Metabolism 9:30–35

    PubMed  CAS  Google Scholar 

  • Bouguerra S (1985) Effets d’un biguanide antidiabétique (NN, dimethylbiguanide) sur l’évolution du syndrome diabétique chez le rat des sables (Psammomys obesus) et les complications vasculaires. Thesis, University of Algiers

    Google Scholar 

  • Bouskela E (1988) Effects of metformin on the wing circulation of normal and diabetic bats. Diabete Metab 14:560–565

    Google Scholar 

  • Bouskela E, Wiernsperger N (1993) Effects of metformin on hemorrhagic shock blood volume and ischemia/reperfusion in nondiabetic hamsters. J Vasc Med Biol 4:41–46

    Google Scholar 

  • Candiloros H, Denet S, Ziegler O, Muller S, Donner M, Drouin R (1994) Effet de la metformin in vitro sur la fluidité membranaire des érythrocytes. Diabete Metab 20:18A

    Google Scholar 

  • Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO (1991) Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol 70:1593–1600

    PubMed  CAS  Google Scholar 

  • Caspary WF (1971) Effect of biguanides on intestinal transport of sugars, amino acids and calcium. Naunyn Schniedebergs Arch Pharmakol 269:421–422

    Google Scholar 

  • Caspary WF (1977) Biguanides and intestinal absorptive function. Acta Hepatogastroenterol stuttg 24:473–480

    PubMed  CAS  Google Scholar 

  • Caspary WF, Creutzfeldt W (1971) Analysis of the inhibitory effects of biguanides on glucose absorption: inhibition of active sugar transport. Diabetologia 7:379–385

    Article  PubMed  CAS  Google Scholar 

  • Catheline M (1974) Contribution biochimique à l’étude du NIN1-dimethylbiguanide. Thesis, University of Rennes

    Google Scholar 

  • Chan JCN, Tomlinson B, Critchley AJH, Cockram CS, Waiden RJ (1993) Metabolic and haemodynamic effects of metformin and glibenclamide in normotensive NIDDN patients. Diabetes Care 16:1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Charlon V, Boucher F, Mouhieddine S, De Leiris J (1988) Reduction of myocardial infarct size by metformin in rats submitted to permanent left coronary artery ligation. Diabete Metab 14:591–595

    Google Scholar 

  • Cigolini M, Bosello O, Zancanaro G, Oralandi PG, Fezzi O, Smith U (1984) Influcence of Metformin on metabolic effect of insulin in human adipose tissue in vitro. Diabete Metab 10:311–315

    PubMed  CAS  Google Scholar 

  • Civelek V, Yilmaz T, Satman I, Onen S, Gumustas K, Arioglu E, Demiroglu Y, Deveim S (1991) Impaired glucose utilization as measured by 3H2O production in erythrocytes of patients with type 1 diabetes mellitus. Diabetes 40 [Suppl 1]:160

    Google Scholar 

  • Cohen RD, Iles RA (1977) Lactic acidosis: some physiological and clinical considerations. Clin Sci Mol Med 53:405–410

    PubMed  CAS  Google Scholar 

  • Cohen Y, Hirsch C (1968) Etude autoradiographique chez la souris d’un antidiabétique oral marqué au 14C, le N,N-dimethylbiguanide, après administrations tépétées. Therapie 23:1185–1191

    PubMed  CAS  Google Scholar 

  • Colantuoni A, Bertuglia S, Donato L (1988) Effects of metformin on microvascular permeability in diabetic Syrian hamsters. Diabete Metab 14:549–553

    Google Scholar 

  • Comi RJ, Hamil Ton H (1994) Reduction of red cell glucose transporter intrinsic activity in diabetes running. Horm Metab Res 26:26–32

    Article  PubMed  CAS  Google Scholar 

  • Conget JI, Sarri Y, Gonzalez-Clemente JM, Gomis R, Malaisse WJ (1991) Impaired utilization of glucose by insulin-insensitive cells: study in erythrocytes from normal and diabetic subjects. Diabetologia 34:P471

    Google Scholar 

  • Cook DE (1978) The effects of phenformin in normal vs diabetic isolated perfused rat liver. Res Commun Chem Pathol Pharmacol 22:119–134

    PubMed  CAS  Google Scholar 

  • Corbellini A, Torti G (1967) Research on the antitumoral activity of biguanides. Arch Ital Patol 10:197–210

    CAS  Google Scholar 

  • Corsini GU, Sirigu F, Tagliamonte P, Muntoni S (1974) Effects of biguanides on fatty acid and glucose oxidation in muscle. Pharmacol Res Commun 6:253–261

    Article  PubMed  CAS  Google Scholar 

  • Coupar IM, McColl I (1974) Glucoe absorption from the rat jejunum during acute exposure to metformin and phenformin. J Pharm Pharmacol 26:997–998

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt W (1972) Effects of biguanides on intestinal absorption in vivo and in vitro. Isr J Med Sci 8:691–696

    Google Scholar 

  • Creutzfeldt W, Söling HD, Moench A, Rauh E, Bol M (1962) Die Wirkung von NI, n-butylbiguanide (W37) und NI, β-phenyläthylbiguanid (W32) auf den Alloxan- und Phlorizin-Diabetes und die intestinale Glucoseabsorption von Ratten. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 244:31–47

    Article  PubMed  CAS  Google Scholar 

  • Cuber JC, Bosshard A, Vidal H, Vega F, Wiernsperger N, Rapin JR (1994) Metabolic and drug distribution studies do not support direct inhibitory effects of metformin on intestinal glucose absorption. Diabete Metab 20:1–8

    Google Scholar 

  • Curtis-Prior PB (1982) Reduction of the absorption of the fatty acid and glycerol moieties of ingested triglycerides by biguanides: a possible contribution to their antiobesity, antihypertriglyceridemic and anti-diabetes properties. Int J Obes 6:229–306

    Google Scholar 

  • Cusi K, Consoli A (1994) Effect of metformin on glucose and lactate metabolism in NIDDM. Diabetes 43 [Suppl 1]:817

    Google Scholar 

  • Czech M (1980) Insulin action and the regulation of hexose transport. Diabetes 29:399–409

    PubMed  CAS  Google Scholar 

  • Czyzyk A, Tawecki J, Sadowski J, Ponikowska I, Szcepanik Z (1968) Effect of biguanides on intestinal absorption of glucose. Diabetes 17:492–498

    PubMed  CAS  Google Scholar 

  • Davidoff F (1970) Parameters of biguanide action in vitro which correlate with hypoglycemic activity. Diabetes 19 [Suppl 1]:368

    Google Scholar 

  • Daweke H, Bach I (1963) Experimental studies on the mode of action of biguanides. Metabolism 12:319–332

    PubMed  CAS  Google Scholar 

  • De Caterina R, Marchetti P, Bernini W, Giannarelli R, Giannessi D, Navalesi R (1989) The direct effects of metformin on platelet function in vitro. Eur J Pharmacol 37:211–213

    Article  Google Scholar 

  • De Fronzo RA, Barzilai N, Simonson DC (1991) Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab 73:1294–1301

    Article  Google Scholar 

  • Ditschuneit H, Rott WH, Faulhaber JD (1968) Effekt von Biguaniden auf den Stoffwechsel isolierter Fettzellen. In: Oberdisse K, Daweke H, Michael G (eds) 2 Internationales Biguanid Symposium Düsseldorf 1967. Thieme, Stuttgard, pp 62–73

    Google Scholar 

  • Duch A (1992) Etude du métabolisme intermédiaire chez le rat. Influence de l’entrainement à l’exercice musculaire de l’exposition intermittent au froid et au froid couplé à l’hypoxie, et du diabète induit par la streptozotocine associé à un traitement à la metformine. Thesis, University of Lyon

    Google Scholar 

  • Eisner M, Berger W (1971) Biguanides and gastric emptying in man. Digestion 4:309–313

    Article  PubMed  CAS  Google Scholar 

  • Eriksson J, Widen E, Saloranta C (1990) Metformin improves insulin sensitivity in insulin resistant normoglycemic relatives of patients with NIDDM. Diabetes 39 [Suppl 1]:434

    Google Scholar 

  • Estrada DE, Elliott E, Zinman B, Poon I, Liu Z, Klip A, Daneman D (1994) Regulation of glucose transport and expression of GLUT 3 transporters in human circulating mononuclear cells: studies in cells from insulin-dependent diabetic and nondiabetic individuals. Metabolism 43:591–598

    Article  PubMed  CAS  Google Scholar 

  • Fajans SS (1960) Discussion on “a new hypoglycemic agent, phenformin (DBI).” Diabetes 9:216

    Google Scholar 

  • Fantus IG, Brosseau R (1986) Mechanism of action of metformin: insulin receptor and postreceptor effects in vitro and in vivo. J Clin Endocrinol Metab 63:898–905

    Article  PubMed  CAS  Google Scholar 

  • Feldman RD, Bierbrier GS (1993) Insulin-mediated vasodilation: impairment with increased blood pressure and body mass. Lancet 342:707–709

    Article  PubMed  CAS  Google Scholar 

  • Ferlito S, Del Campo F, De Vincenzo S, Damante G, Coco R, Branca S, Fichera C (1983) Effect of metformin on blood glucose, insulin and C-peptide responses to glucagon in non-insulin dependent diabetics. Farmaco 38:248–254

    CAS  Google Scholar 

  • Ferrannini E, Bjorkman O (1986) Role of red blood cells in the regulation of blood glucose levels in man. Diabetes 35 [Suppl 1]:39

    Google Scholar 

  • Fischer Y, Thomas J, Rösen P, Kammermeier H (1995) Action of metformin on glucose transport and glucose transporter GLUT 1 and GLUT 4 in heart muscle cells from healthy and diabetic rats. Endocrinology (in press)

    Google Scholar 

  • Förster H, Hager E, Mehnert H (1965) Der Einfluß von Butylbiguanid im Tierversuch auf die Resorption von Glucose und Fructose. Arzneimittelforschung 15: 1340–1344

    PubMed  Google Scholar 

  • Fossati P, Fontaine P, Beuscart R, Romon M, Bourdelle-Hego MF, Lepoutre-Vaast D (1985) Les diabètes non insulino-dépendants échappant au contrôle des antidiabétiques oraux. Rev Fr Endocrinol Clin 26:105–116

    Google Scholar 

  • Franke RP, Fuhrmann R, Schnittler HJ, Petrow W, Simons G (1988) Inhibition of human endothelial cell proliferation by metformin during states of hypoxia. Diabete Metab 14:571–574

    Google Scholar 

  • Frayn KN (1967) Effects of metformin on insulin resistance after injury in the rat. Diabetologia 12:53–60

    Article  Google Scholar 

  • Frayn KN, Adnitt PI (1972) Effects of metformin on glucose uptake by isolated diaphragm from normal and diabetic rats. Biochem Pharmacol 21:3153–3162

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN, Adnitt P, Turner P (1973) The use of human skeletal muscle in vitro for biochemical and pharmacological studies of glucose uptake. Clin Sci 44:55–62

    PubMed  CAS  Google Scholar 

  • Freisleben HJ, Ruckert S, Wiernsperger N, Zimmer G (1992) The effects of glucose, insulin and metformin on the order parameters of isolated red cell membranes. An electron paramagnetic resonance spectroscopic study. Biochem Pharmacol 43:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Frorath B, Dreyer M, Rüdiger HW (1985) Three different classes of oral antidiabetic drugs do not increase insulin binding and insulin-induced RNA synthesis in human fibroblast cultures. Res Exp Med 185:45–49

    Article  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1993) Insulin-induced translocation of GLUT-4 in skeletal muscle of insulin-resistant Zucker rats. Exp Clin Endocrinol 101 [Suppl 2]:248

    Google Scholar 

  • Galuska D, Zierath J, Thorne A, Sonnenfeld T, Wallberg-Henriksson H (1991) Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle. Diabete Metab 17 (1 bis):159–163

    PubMed  CAS  Google Scholar 

  • Gawler D, Milligan G, Houslay MD (1988) Treatment of streptozotocin diabetic rats with metformin restores the ability of insulin to inhibit adenylate cyclase activity and demonstrates that insulin does not exert this action through the inhibitory guanine nucleotide regulatory protein Gi. Biochem J 249:537–542

    PubMed  CAS  Google Scholar 

  • Ghareeb A, Btros M, Saba JA, El-Asmar F, El-Shawarby K, Wahba N (1969) Mechamism of action of biguanides on glucose metabolism. Effect of biguanides on intestinal absorption of glucose: an in vivo and in vitro study. Ain Shams Med J 20:313–322

    Google Scholar 

  • Giannattasio G, Torti G, Ferrara G, Lugaro G (1968) Tissue distribution and excretion of N,N-dimethylbiguanides-14C in mouse. Arch Ital Patol Clin Tumori 11:331–345

    PubMed  CAS  Google Scholar 

  • Gin H, Messerzchmitt C, Brottier E, Aubertin J (1985) Metformin iproves insulin resistance in type I Insulin-dependent diabetic patients. Metabolism 34:923–925

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg BH, Brown TJ, Simon I, Spector AA (1981) Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes 30:773–780

    Article  PubMed  CAS  Google Scholar 

  • Goldfine ID, Iwamoto Y, Pezzino V, Trischitta V, Purrello F, Vigneri R (1984) Effects of biguanides and sulfonylureas on insuln receptors in cultured cells. Diabetes Care 7 [Suppl l]:54–58

    PubMed  CAS  Google Scholar 

  • Gould MK (1984) Multiple roles of ATP in the regulation of sugar transport in muscle and adipose tissue. TIBS December 1984:524–527

    Google Scholar 

  • Gould MK Chaudry IH (1970) The action of insulin on glucose uptake by isolated rat soleus muscle. II. Dissociation of a priming effect of insulin from its stimulatory effect. Biochim Biophys Acta 215:258–263

    Article  PubMed  Google Scholar 

  • Grant PJ, Stickland MH, Booth NA, Prentice CR (1991) Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Med 8:361–365

    Article  PubMed  CAS  Google Scholar 

  • Gregorio F, Ambrosi F, Cristallini S, Marchetti P, Navalesi R, Brunetti P, Filipponi P (1991) Do metformin and phenformin potentiate differently β-cell response to high glucose? An in vitro study on isolated rat pancreas. Diabete Metab 17:19–28

    PubMed  CAS  Google Scholar 

  • Grigorescu F, Laurent A, Chavanieu A, Capony JP (1991) Cellular mechanism of metformin action. Diabete Metab 17:146–149

    PubMed  CAS  Google Scholar 

  • Grigorescu F, Bacara MT, Rouard M, Renard E (1994) Insuln and IGF-1 signaling in oocyte maturation. Horm Res 42:55–61

    Article  PubMed  CAS  Google Scholar 

  • Haeckel R, Haeckel H (1972) Inhibition of gluconeogenesis from lactate by phenylethylbiguanide in the perfused guinea pig liver. Diabetologia 8:117–124

    Article  PubMed  CAS  Google Scholar 

  • Halimi S, Rossini E, Benhamou PY, Faure P, Andre P (1994) Insulin resistance induced by post-weaning high fructose diet in Wistar rats: reversal by metformin and pentobarbital. IDF Congress, Kobe

    Google Scholar 

  • Hall H, Ramachander G, Glassman JM (1968) Tissue distribution and excretion of phenformin in normal and diabetic animals. Ann NY Acad Sci 148:601–611

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Benecke H, Greten H, Matthaei S (1993) Metformin increases glucose transporter protein and gene expression in human fibroblasts. Biochem Biophys Res Commun 196:382–387

    Article  PubMed  CAS  Google Scholar 

  • Handberg A, Kayser L, Hoyer PE, Voldstedlund M, Hansen HP, Vinten J (1993) Metformin ameliorates diabetes but does not normalize the decreased GLUT 4 content in skeletal muscle of obese (fa/fa) Zucker rats. Diabetologia 36:481–486

    Article  PubMed  CAS  Google Scholar 

  • Handberg A, Kayser L, Hoyer PE, Micheelsen J, Vinten J (1994) Elevated GLUT 1 level in crude muscle membranes from diabetic Zucker rats despite a normal GLUT 1 level in perineurial sheaths. Diabetologia 37:443–448

    Article  PubMed  CAS  Google Scholar 

  • Hausmann L, Schubotz R (1975) Proinsulin und Insulinsekretion bei übergewichtigen Frauen vor und nach Gabe von Metformin. Arzneimittelforschung Res 25: 668–675

    CAS  Google Scholar 

  • Herman LS, Melander A (1992) Biguanides: basic aspects and clinical uses. In: Alberti KGMM, De Fronzo RA, Keen H, Zimmet P (eds) International textbook on diabetes mellitus. Wiley, London, pp 774–795

    Google Scholar 

  • Hertz Y, Epstein N, Abraham M, Madar Z, Hepber B, Gertler A (1989) Effects of metformin on plasma insulin glucose metabolism and protein synthesis in the common carp Cyprinus carpio L. Aquaculture 80:175–187

    Article  CAS  Google Scholar 

  • Hildmann W, Lippmann HG (1963) Aktivitäten von Glukose-6-phosphatase und hexokinase unter der Einwirkung von N1, n-butylbiguanid. Acta Biol Med Ger 14:345–352

    Google Scholar 

  • Ho RS, Kelly LA (1980) Effects of two glucose absorption inhibitors: phenformin and 43–522 on hepatic gluconeogenesis. J Pharm Pharmacol 32:554–557

    Article  PubMed  CAS  Google Scholar 

  • Hocking ED, Chakrabarti R, Evans J, Fearnley GR (1967) Effect of biguanides and Atromid on fibrinolysis. J Atheroscler Res 7:121–130

    Article  PubMed  CAS  Google Scholar 

  • Holle A, Mangels W, Dreyer M, Kühnau J, Rüdiger H (1981) Biguanide treatmenty increases the number of insulin receptor sites on human erythrocytes. N Engl J Med 305:563–566

    Article  PubMed  CAS  Google Scholar 

  • Horn Z, Palkovits M (1964) L’effet du NN-diméthylbiguanide sur la thyroïde. Therapie 19:619–623

    PubMed  CAS  Google Scholar 

  • Hother-Nielsen O, Schmitz O, Andersen PH, Beck-Nielsen H, Pedersen O (1989) Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol (copenh) 120:257–265

    CAS  Google Scholar 

  • Hotta N, Komori T, Kobayashi M, Sakakibara F, Koh N, Sakamoto N (1991) A new possible mechanism of hypoglycemic effect of biguanides. Diabetologia 34 [Suppl 2]: 116

    Google Scholar 

  • Hotta N, Mori Y, Nakamura J, Koh N, Sakakibara F, Hamada Y (1994) Effect of biguanides on alanine-induced lipid synthsis in hepatocytes of WKY-fatty rats. Diabetologia 37 [Suppl 1]:238

    Google Scholar 

  • Hundal JS, Ramlal T, Reyes R, Leiter LA, Klip A (1992) Cellular mechanism of metformin action involves glucose tranpsorter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 131:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Huupponen R, Pyykkö K, Koulu M, Rouru J (1993) Metformin and liver glycogen synthase activity in obese Zucker rats. Res Commun Chem Pathol Pharmacol 79:219–227

    PubMed  CAS  Google Scholar 

  • Intaglietta M (1988) Arteriolar vasomotion: normal physiological activity or defence mechanism. Diabete Metab 14:489–494

    Google Scholar 

  • Jackson RA, Hawa MI, Jaspan JB, Sim BM, Disilvio L, Featherde D, Kurtz AB (1987) Mechanism of metformin action in non-insulin-dependent diabetes. Diabete 36:632–640

    Article  CAS  Google Scholar 

  • Jacobs D, Hayes G, Truglia J, Lockwood D (1986) Effects of metformin on insulin receptor tyrosine kinase activity in rat adipocytes. Diabetologia 29:798–801

    Article  PubMed  CAS  Google Scholar 

  • Jailing O, Olasen C (1984) The effect of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cells. Acta Pharmacol Toxicol 54:327–332

    Article  Google Scholar 

  • Jangaard N, Pereira JN, Pinson R (1968) Metabolic effects of the biguanides and possible mechanism of action. Diabetes 17:96–104

    PubMed  CAS  Google Scholar 

  • Jeppesen J, Zhou MY, Chen YD, Reaven GM (1994) Effect of metformin on postprandial lipemia in patients with fairly to poorly controlled NIDDM. Diabetes Care 17:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Johnson AB, Webster JM, Sum CF, Heseltine L, Argyraki M, Cooper BG, Taylor R (1993) The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism 42:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Jyothirmayi GN, Jayasundaramma B, Reddi A (1992) In vivo glycogen and lipid synthesis by various tissues from normal and metformin-treated KK mice. Res Commun Chem Pathol Pharmacol 78:113–116

    PubMed  CAS  Google Scholar 

  • Kakemi M, Sasaki H, Saeki K, Endoh M, Katayama K, Koizumi T (1983) Pharmacological effects of metformin in relation to its disposition in alloxandiabetic rats. J Pharm acobiodyn 6:71–87

    Article  CAS  Google Scholar 

  • Kaneko T (1965) Studies on the mode of action of hypoglycemic biguanides. J Jpn Soc Int Med 52:78–95

    Google Scholar 

  • Kanigür-Sultuybek G, Hatemi H, Güven M, Ulutin T, Tezcan V, Ulutin ON (1993) The effect of metformin and glicazide on platelets and red blood cell glucose transport mechanisms in impaired glucose tolerance and type II diabetic patients with vasculopathy. Thromb Haemorrh Dis 7:17–21

    Google Scholar 

  • Kato S, Kawabe T, Nakai A, Miyamoyo T, Masunaga R, Ito M, Mukuno T, Sawai T, Tanabe E, Kataoka K, Nakagawa H, Aono T, Nagasaka A (1990) Glucose uptake by erythrocytes in NIDDM. Diabetes 39 [Suppl 1]: 1117

    Google Scholar 

  • Kellet GL, Jamal A, Robertson JP, Wollen N (1984) The acute regulation of glucose absorption transport and metabolism in rat small intestine by insulin in vivo. Biochem J 219:1027–1035

    Google Scholar 

  • Kemmer F, Berger M, Herberg L, Gries F (1977) Effects of metformin on glucose metabolism of isolated perfused rat skeletal muscle. Arzneimittelforschung 27:1573–1576

    PubMed  CAS  Google Scholar 

  • Kessler M, Meier W, Storelli C, Semenza G (1975) The biguanide inhibition of D-glucose transport in membrane vesicles from small intestinal brush borders. Biochim Biophys Acta 413:444–452

    Article  PubMed  CAS  Google Scholar 

  • Ketekou F, Rous S, Favarger P (1969) The effect of chlorpropamide and phenethyl-biguanide on lipogenesis. Med Exp 19:1–9

    PubMed  CAS  Google Scholar 

  • Khan NA, Wiernsperger N, Quemener V, Havouis R, Moulinoux JP (1992) Characterization of metformin transport system in NIH 3T3 cells. J Cell Physiol 152:310–316

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Wiernsperger N, Quemener V, Moulinoux JP (1994) Internalization of metformin is necessary for its action on potentiating the insulin-induced Xenopus laevis oocyte maturation. J Endocrinol 142:245–250

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter H, Jung F, Gerhards M, Roggenkamp HG, (1987) Rheological effect of metformin on the blood of patients with dietetically controlled type-II b diabetes. Clin Hemorheol 7:781–791

    Google Scholar 

  • Kissun R (1988) Inhibition of induced neovascularization in the rabbit cornea: a preliminary study. Diabete Metab 14:575–579

    Google Scholar 

  • Klip A, Guma A, Ramlal T, Bilan PJ, Lam L, Leiter LA (1992) Stimulation of hexose transport by metformin in L6 muscle cells in culture. Endocrinology 130:2535–2544

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Tanaka R, Hamada C (1976) Intestinal absorption characteristics of buformin and phenformin in rats. Chem Pharm Bull Tokyo 24:1555–1560

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Hotta N, Kobayashi M, Sakakibara F, Koh N, Sakamoto N (1993) Biguanides may produce hypoglycemic action in isolated rat hepatocytes through their effects on L-alanine transport. Diabetes Res Clin Pract 22:11–17

    Article  PubMed  CAS  Google Scholar 

  • Koschinsky T, Bünting CE, Rütter R, Gries FA (1988) Influence of metformin on vascular cell proliferation. Diabete Metab 14:566–570

    Google Scholar 

  • Kozka IJ, Holman GD (1993) Metformin blocks downregulation of cell surface GLUT 4 caused by chronic insulin treatment of rat adipocytes. Diabetes 42: 1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Kroneberg G, Stoepel K (1958) Untersuchungen über die Guanid-Hyperglykämie und die Beeinflussung der Adrenalinwirkung durch β-Phenyläthylbiguanid und andere Guanidin-Verbindungen. Arzneimittelforschung 8:470–475

    PubMed  CAS  Google Scholar 

  • Kühl C, Jensen L, Vagn Nielsen O, Pedersen J (1979) The effect of metformin on the arginine-induced insulin and glucagon release in pigs. Acta Pharmacol Toxicol 44:235–237

    Article  Google Scholar 

  • Kühnle HF, Schmidt FH, Deaciuc IV (1984) In vivo and in vitro effects of a new hypoglycemic agent, 2–3 methylcinnamylhydrazano propionate, BM 42–304, on glucose metabolism in guinea pigs. Biochem Pharmacol 33:1437–1444

    Article  Google Scholar 

  • Kühnle HF, Wolff HP, Schmidt FH, Reiter R (1990) Blood glucose lowering activity of 2-(3-phenylpropoxyimido-)-butyrate (BM 13 677). Biochem Pharmacol 40: 1821–1825

    Article  Google Scholar 

  • L’age M, Stehr J, Wahl P (1963) Der Einfluß von N1-n-butylbiguanide auf das Verhalten de unveresterten Fettsäuren (UFS) bei Normalpersonen und bei Diabetikern und am epididymalen Fettgewebe der Ratte. Klin Wocharschr 41:659–662

    Article  Google Scholar 

  • Lacombe C, Nibbelink M (1981) Changes in the lipoproteins in rabbits on a high fat cholesterol-free diet: preventive action of metformin. Experientia 37:854–855

    Article  PubMed  CAS  Google Scholar 

  • Landin K, Tengborn L, Smith U (1994) Effects of metformin and metoprolol CR on hormones and fibrinolytic variables during a hyperinsulinemic euglycemic clamp in man. Thromb Haemost 71:783–787

    PubMed  CAS  Google Scholar 

  • Landin-Wilhelmsen K (1992) Metformin and blood pressure. J Clin Pharmacol Ther 17:75–79

    Article  CAS  Google Scholar 

  • Leatherdale BA, Bailey CJ (1986) Acute antihyperglycemic effect of metformin without alteration of gastric emptying. ICRS Med Sci 14:1085–1086

    Google Scholar 

  • Lennard MS, Casey C, Tucker GT, Woods HP (1978) Determination of metformin in biological samples. Br J Clin Pharmacol 6:183–184

    Article  PubMed  CAS  Google Scholar 

  • Lescure B, Volfin P (1971) Importance of Mn in the regulation of gluconeogenesis in cellular and acellular kidney cortex systems: new data on mechanism of action of biguanides. Biochimie 53:391–397

    Article  PubMed  CAS  Google Scholar 

  • Lloyd MH, Iles RA, Walton B, Hamilton CA, Cohen RD (1975) Effect of phenformin on gluconeogenesis from lactate and intracellular pH in the isolated perfused guinea-pig liver. Diabetes 24:618–624

    Article  PubMed  CAS  Google Scholar 

  • Lorch E (1971) Inhibition of intestinal absorption and improvement of oral glucose tolerance by biguanides in the normal and in the streptozotocin-diabetic rat. Diabetologia 7:195–203

    Article  PubMed  CAS  Google Scholar 

  • Lord JM, Puah JA, Atkins TW, Bailey CJ (1985) Postreceptor effect of metformin on insulin action in mice. J Pharm Pharmacol 37:821–823

    Article  PubMed  CAS  Google Scholar 

  • Losert W, Schillinger E, Kraaz W, Loge O, Jahn P (1972) Tierexperimentelle Untersuchungen zur Wirkungsweise der Biguanide. Arzneimittelforschung 22: 1157–1169, 1540–1552

    PubMed  CAS  Google Scholar 

  • Loubatieres AL, Mariani MM, Jallet F (1971) The role of the pancreas and extrap-ancreatic tissues in the hypoglycemic action provoked by the biguanides. J Pharmacol 2:201–202

    Google Scholar 

  • Love AHG (1969) The effects of biguanides on intestinal absorption. Diabetologia 5:422

    Google Scholar 

  • Lovejoy J, Digirolamo M (1990) Acute lactate production and insulin sensitivity during intravenous glucose and insulin administration in lean and obese subjects. Diabetes 39 [Suppl 1]:1108

    Google Scholar 

  • Lugaro G, Giannattasio G (1968) Effect of biguanides on the respiration of tumour cells. Experientia 24:794–795

    Article  PubMed  CAS  Google Scholar 

  • Maggi G (1968) Sul mecanismo d’azione della fenetilbiguanide (PEBG). XI. Effetti sulla glicolisi e sulla glicogenosintesi nell’animale normale. Boll Soc Ital Biol Sper 44:155–159

    PubMed  CAS  Google Scholar 

  • Mainguet P, Lavaux JP, Franckson J (1972) Study of intestinal glucose absorption in diabetic patients after acute administration of dimethylbiguanide. Diabete 20:39–42

    PubMed  CAS  Google Scholar 

  • Manley SE, Mussett S, Sutton PJ, Morris ER, Trinick TR, Cull CA, Holman RR, Turner RC (1994) Total proinsulin and specific insulin in type 2 diabetic patients randomized to diet, sulphonylurea, insulin and metformin therapy Diabetic Med 11 [Suppl 2]:P34

    Google Scholar 

  • Marchetti P, Mastello P, Benzi L, Cecchetti P, Fierabracci V, Giannarelli R, Gregorio F, Brunetti P, Navalesi R (1989) Effects of metformin therapy on plasma amino acid pattern in patients with maturity onset diabetes. Drugs Exp Clin Res 15:565–570

    PubMed  CAS  Google Scholar 

  • Marquie G, Lafontan M (1974) Inhibition par le NN-dimethylbiguanide de la biosynthèse “in vivo” des lipides dans l’aorte de lapin normal à partir de l’acétate 14C. J Physiol (paris) 69:271A-272A

    Google Scholar 

  • Massad L, Plotkine M, Alix M, Boulu RG (1988) Antithrombotic drugs in a carotid occlusion model: beneficial effects of the antidiabetic agent metformin. Diabete Metab 14:544–548

    Google Scholar 

  • Matthaei S, Greten H (1991) Evidence that metformin ameliorates cellular insulin resistance by potentiating insulin-induced translocation of glucose transporters to the plasma membrane. Diabete Metab 17 (1 bis): 150–158

    PubMed  CAS  Google Scholar 

  • Matthaei S, Reibold JP, Hamann A, Klein HH, Greten H (1989) Effect of in vivo metformin-treatment on insulin resistance in the obese (fa/fa) Zucker rat. Diabetes 38 [Suppl 2]: 855

    Google Scholar 

  • Matthaei S, Hamann A, Klein HH, Benecke H, Kreymann G, Flier JS, Greten H (1991) Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40:850–875

    Article  PubMed  CAS  Google Scholar 

  • Matthaei S, Reibold JP, Hamann A, Benecke H, Häring HU, Greten H, Klein HH (1993) In vivo metformin treatment ameliorates insulin resistance: evidence for potentiation of insulin-induced translocation and increased functional activity of glucose transporters in obese (fa/fa) rat adipocytes. Endocrinology 133:304–311

    Article  PubMed  CAS  Google Scholar 

  • May JM, Danzo BJ (1988) Photolabeling of the human erythrocyte glucose carrier with androgenic steroids. Biochim Biophys Acta 943:199–210

    Article  PubMed  CAS  Google Scholar 

  • Maziere JC, Maziere C, Gardette J, Salmon S, Auclair M Polonowski J (1988) The antidiabetic drug metformin decreases cholesterol metabolism in cultured human fibroblasts. Atherosclerosis 71:27–33

    Article  PubMed  CAS  Google Scholar 

  • Medina JM, Sanchez-Medina Mayor F (1971) Effect of phenformin on gluconeo-genesis in perfused rat liver. Rev Esp Fisiol 27:253–256

    PubMed  CAS  Google Scholar 

  • Mehnert H, Schäfer G, Kaliampetsos G, Stuhlfauth K, Engenhardt W (1962) Die Insulinsekretion des Pankreas bei extracorporaler Perfusion. II. Durchströmungen der Bauchspeicheldrüse mit Pertison, Glucose, Carbutamid und Biguaniden. Klin Wochen schr 40:1146–1151

    Article  CAS  Google Scholar 

  • Melin B, Cherqui G, Blivet MJ, Caron M, Lascols O, Capeau J, Picard J (1990) Dual effect of metformin in cultured rat hepatocytes: potentiation of insulin action and prevention of insulin-induced resistance. Metabolism 39:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Meyer F (1960) Etude sur le mode d’action des biguanides hypoglycémiants. C R Acad Sci [III] 251:1928–1930

    Google Scholar 

  • Meyer F, Ipaktchi M, Clauser H (1967) Specific inhibition of gluconeogenesis by biguanides. Nature January 14:203–204

    Article  Google Scholar 

  • Molloy AM, Ardill J, Tomkin GH (1980) The effect of metformin treatment on gastric acid secretion and gastrointestinal hormone levels in normal subjects. Diabetologia 19:93–96

    Article  PubMed  CAS  Google Scholar 

  • Moore CX, Cooper GJ (1991) Co-secretion of amylin and insulin from cultured islet beta-cells: modulation by nutrient secreta-gogues, islet hormones and hypoglycemic agents. Biochem Biophys Res Commun 179:1–9

    Article  PubMed  CAS  Google Scholar 

  • Moore UM, Tighe OP, Collins PB, Johnson AH, Tomkin GH (1988) The in vitro effect of insulin and metformin on cholesterol biosynthesis in cultured enterocytes from diabetic rats. Diabetologia 31:524A

    Google Scholar 

  • Moore UM, Lyons D, Tighe OP, Johnson AH, Tomkin GH, Collins PB (1990) Metformin-induced modulation of serum lipids is not reflected in leucocyte cholesterogenic rates. Diabetologia 33:A205

    Article  Google Scholar 

  • Morgan DA, Ray CA, Balon TW, Mark AL (1992) Metformin increases insulin sensitivity and lowers arterial pressure in spontaneously hypertensive rats. Clin Res 40:740A

    Google Scholar 

  • Mountjoy KG, Finlay GJ, Holdaway IM (1987) Effects of metformin and glibenclamide on insulin receptors in fibroblasts and tumor cells in vitro. J Endocrinol Invest 10:553–557

    PubMed  CAS  Google Scholar 

  • Muntoni S (1974) Inhibition of fatty acid oxidation by biguanides: implications for metabolic physiopathology. Adv Lipid Res 12:311–377

    PubMed  CAS  Google Scholar 

  • Muntoni S, Tagliamonte P, Pintus F (1978) Metformin and plasma free fatty acid turnover in man. In: Carlson LA (ed) International Conference on Atherosclerosis. Raven, New York, pp 333–338

    Google Scholar 

  • Muntoni S Tagliamonte P, Sirigu F, Corsini GU (1973) Demonstration of the mechanism of action of biguanides. Acta Diabetol Lat 10:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Nagi DK, Yudkin JS (1993) Effects of metformin on insulin resistance risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. Diabetes Care 16:621–629

    Article  PubMed  CAS  Google Scholar 

  • Nair CH, Azhar A, Wilson JD, Dhall DP (1991) Studies on fibrin network structure in human plasma. Part II, Clinical application: diabetes and antidiabetic drugs. Thromb Res 64:477–485

    Article  PubMed  CAS  Google Scholar 

  • Neumann RE, Tytell AA (1962) Stimulated glycolysis of KB cell cultures by guanidine derivatives and other compounds affecting respiration. Proc Soc Exp Biol 110:622–626

    Article  Google Scholar 

  • Nicholls TJ, Leese HJ (1984) The effects of phenformin on the transport and metabolism of sugars by the rat small intestine. Biochem Pharmacol 33:771–777

    Article  Google Scholar 

  • Noel M (1979) Kinetic study of normal and sustained release dosage forms of metformin in normal subjects. Res Clin Forum 1:35–43

    CAS  Google Scholar 

  • Ohnhaus EE, Berger W, Nars PW (1978) The effect of different doses of dimethylniguanide on liver blood blow, blood glucose and plasma immunoreactive insulin in anesthetized rats. Biochem Pharmacol 27:789–793

    Article  PubMed  CAS  Google Scholar 

  • Owen MR, Halestrap AP (1992) The inhibition of gluconeogenesis by mild respiratory chain inhibitors suggests a possible mode of action for the biguanide hypoglycemic agents. Diabetic Med 9 [Suppl 1]:A29

    Google Scholar 

  • Parisi R, Cavaliere R, Innocenti M, Porta M (1979) Modifications de l’agrégation plaquettaire induites par la metformine chez les diabétiques. Gaz Med Fr 86:169–172

    Google Scholar 

  • Pavel I, Sdrobici D, Chisiu N, Mihalache N, Tanasescu N, Bonaparte H (1964) Recherches concernant le mécanisme d’action du dimethylbiguanide sur le métabolisme du glucose chez le rat diabétique alloxanisé. Rev Roum Med 1:361–367

    Google Scholar 

  • Pears JS, Jung RT, Burchell A (1990) Contrasting effects of metformin on glucose-6-phosphatase from fed and diabetic livers. Diabetic Med 7 [Suppl 2]:12A

    Google Scholar 

  • Pedersen O, Hother-Nielsen O, Bak J, Richelsen B, Beck-nielsen H, Schwartz-Soerensen N (1988) The effects of metformin on adipocyte insulin action and metabolic control in obese subjects with type 2 diabetes. Diabetic Med 6:249–256

    Article  Google Scholar 

  • Penicaud L, Hittier Y, Ferre P, Girard J (1989) Hypoglycemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J 262:881–885

    PubMed  CAS  Google Scholar 

  • Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, Ventura M, Santeusanio F, Brunetti P, Bolli GB (1994) Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 43:920–928

    Article  PubMed  CAS  Google Scholar 

  • Pilch PF, Thompson PA, Czech MP (1980) Coordinate modulation of D-glucose transport activity and bilayer fluidity in plasma membranes derived from control and insulin-treated adipocytes. Proc Natl Acad Sci USA 77:915–918

    Article  PubMed  CAS  Google Scholar 

  • Pournaras C, Strommer K, Tsacopoulos M, Gilodi N (1988) Experimental branch vein occlusion in miniature pigs: effects of metformin on the evolution of the ischemic microangiopathy. Diabete Metab 14:580–586

    Google Scholar 

  • Proske G, Osterlob G, Beckmann R, Lagler F, Micheal G, Mückler H (1962) Tierexperimentelle Untersuchungen mit blutzuckerwirksamen Biguaniden. Arzneimittelforschung 12:314–318

    PubMed  CAS  Google Scholar 

  • Purrello F, Gullo D, Brunetti A, Buscema M, Italia S, Goldfien I, Vigneri R (1987) Direct effects of biguanides on glucose utilization in vitro. Metabolism 36: 774–776

    Article  PubMed  CAS  Google Scholar 

  • Purrello F, Gullo D, Buscema N, Pezzino V, Vigneri R, Goldfine ID, (1988) Metformin enhances certain insulin actions in cultured rat hepatoma cells. Diabetologia 31:385–389

    Article  PubMed  CAS  Google Scholar 

  • Rapin JR, Lamproglou I, Jacques W, Leponcin M (1988a) Effects of metformin on metabolic indices of cerebral and peripheral ischemia. Diabete Metab 14:587–590

    Google Scholar 

  • Rapin JR, Lespinasse P, Yoa RG, Raymon L, Vaillant G, Brun JM (1988b) Effects of metformin on erythrocyte deformability in the presence of insulin. In vitro study on erythrocytes from diabetic patients. Diabete Metab 14:610–612

    Google Scholar 

  • Rapin JR, Lespinasse C, Yoa R, Wiernsperger N (1991) Erythrocyte glucose consumption in insulin-dependent diabetes: effect of Metformin in vitro. Diabete Metab 17:164–167

    PubMed  CAS  Google Scholar 

  • Read BD, Mcelhaney RN (1976) Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes. Biochim Biophys Acta 419:331–341

    Article  PubMed  CAS  Google Scholar 

  • Reddi AS, Jyothirmayi GN (1992) Effect of chronic metformin treatment on hepatic and muscle glycogen metabolism in KK mice. Biochem Med Metab Biol 47: 124–132

    Article  PubMed  CAS  Google Scholar 

  • Reddi AS, Jyothirmayi GN (1993) Effect of metformin treatment on glucose tolerance and glomerulosclerosis in KK mice. Diabete Metab 19:44–51

    PubMed  CAS  Google Scholar 

  • Regoeczi E, Walton PI (1967) Metabolism of 125I-fibrinogen in normal monkeys and in those with pharmacologically induced plasminogen activator release. Clin Sci 33:559–568

    PubMed  CAS  Google Scholar 

  • Riccio A, Del Prato S, Vigili DE, Kreutzenberg S, Tiengo A (1991) Glucose and lipid metabolism in non-insulin dependent diabetes. Effect of metformin. Diabete Metab 17 (Ibis): 180–184

    PubMed  CAS  Google Scholar 

  • Rikimaru M, Nishikawa T, Shimizu Y, Ishida N (1965) Relationship between tissue culture cytotoxicity and acute toxicity in mice of biguanide derivatives. J Antibiot 18:196–199

    PubMed  CAS  Google Scholar 

  • Rossetti L, De Fronzo R, Gherzi R, Stein P, Andraghetti G, Falzetti G, Shulman G, Klein-Robbenhaar E, Cordera R (1990) Effect of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabolism 39:425–435

    Article  PubMed  CAS  Google Scholar 

  • Saleh S (1974) Studies on the effect of oral hypoglycemic agents on hepatic glycogenolysis. Pharmacol Res Commun 6:539–550

    Article  PubMed  CAS  Google Scholar 

  • Sandor A, Kerner J, Alkonyi I (1979) Role of carnitine in promoting the effect of antidiabetic biguanides on hepatic ketogenesis. Biochem Pharmacol 28:969–974

    Article  PubMed  CAS  Google Scholar 

  • Sarabia V, Lam L, Burdett E, Leiter LA, Klip A (1992) Glucose transport in human skeletal muscle cells in culture. J Clin Invest 90:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Sasson S, Gorowitz N, Boukobza-Vardi N, Cerasi E, King GL, Kaiser N (1994) Regulation of the hexose transport system in vascular cells by glucose and metformin Diabetologia 37 [Suppl 1]:237

    Google Scholar 

  • Schäfer G (1976) On the mechanism of action of hypoglycemia-producing biguanides. A reevaluation and a molecular theory. Biochem Pharmacol 25:2005–2014

    Article  PubMed  Google Scholar 

  • Schäfer G (1979) Biguanides: molecular mode of action. Res Clin Forum 1:21–32

    Google Scholar 

  • Schäfer G (1983) Biguanides: a review of history, pharmacodynamics and therapy. Diabete Metab 9:148–163

    PubMed  Google Scholar 

  • Schäfer G Bojanowski D (1972) Interaction of biguanides with mitochondrial and synthetic membranes. Eur J Biochem 27:364–375

    Article  PubMed  Google Scholar 

  • Schäfer G, Mehnert H (1962) Vergleichende Untersuchungen zur Wirkung von Biguaniden auf die Glukoseoxydation am epididymalen Fettanhang der Ratte und am subcutanen Fettgewebe des Menschen. Klin Wochenschr 12:654–655

    Article  Google Scholar 

  • Schatz H, Katsilambros N, Nirele C, Pfeiffer EE (1972) The effect of biguanides on secretion and biosynthesis of insulin in isolated islets of rats. Diabetologia 8:402–407

    Article  PubMed  CAS  Google Scholar 

  • Schillinger E, Kraaz W, Loge O, Jahn P, Losert W (1970) Verstärkung der hypoglykämischen Wirkung von Insulin durch Buformin bei Ratten. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 266:437–438

    Article  CAS  Google Scholar 

  • Schlienger JL, Frick A, Marbach J, Fruend H, Imler M (1979) Effects of biguanides on the intermediate metabolism of glucose in normal and portal-structured rats. Diabete Metab 5:5–9

    PubMed  CAS  Google Scholar 

  • Schönborn J, Heim K, Rabast U, Kasper M (1975) Oxidation rate of plasma FFA in maturity onset diabetes. Effects of metformin. Diabetologia 11:246

    Google Scholar 

  • Scott LM, Tomkin GH (1983) Changes in hepatic and intestinal cholesterol regulatory enzymes. The influence of metformin. Biochem Pharmacol 32:827–830

    Article  PubMed  CAS  Google Scholar 

  • Sgambato S, Varricchio M, Tesaura P, Passariello N, Carbone L (1980) L’uso della metformina nella cardiopatia ischemica. Clin Ter 94:77–85

    PubMed  CAS  Google Scholar 

  • Shaw S, Jayatilleke E, Bauman W, Herbert V (1993) Mechanism of B12 malabsorption and depletion due to metformin discovered by using serial serum holo-transcobalamin II (HolotCII) (B12 on TCII) as a surrogate for serial Schilling tests. Blood 82 [Suppl 1]:423A

    Google Scholar 

  • Shepherd M, Kushwaha R (1994) Effect of metformin on basal and postprandial lipid and carbohydrate metabolism in NIDDM subjects. Diabetes 43 [Suppl 1]:245

    Google Scholar 

  • Sirtori CR, Catapano A, Ghiselli GC, Innocenti AL, Rodriguez J (1977) Metformin: an antiatherosclerotic agent modifying very low density lipoproteins in rabbits. Atherosclerosis 26:79–89

    Article  PubMed  CAS  Google Scholar 

  • Sirtori CR, Franceschini G, Galli-Kienle M, Clghetti G, Galli G, Bondioli A, Conti F (1978) Disposition of metformin in man. Clin Pharmacol Ther 24:686–693

    Google Scholar 

  • Sirtori CR, Franceschini G, Gianfranceschi G (1984) Metformin improves peripheral vascular flow in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol 6:914–923

    Article  PubMed  CAS  Google Scholar 

  • Sirtori CR, Manzoni C, Lovati MR (1991) Mechanisms of lipid-lowering agents. Cardiology 78:226–235

    Article  PubMed  CAS  Google Scholar 

  • Söling HD, Werchau H, Creutzfeldt W (1963) Untersuchungen zur Stoffwechselwirkung von blutzuckersenkenden Biguaniden bei verschiedenen Tierspezies. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 244:290–310

    Google Scholar 

  • Son HS (1992) Effects of metformin on glucose-stimulated insulin secretion in the perfused rat pancreas. J Cathol Med Coll 45:133–140

    CAS  Google Scholar 

  • Sterne J (1964) The present state of knowledge on the mode of action of the antidiabetic biguanides. Metabolism 13:791–798

    Article  PubMed  CAS  Google Scholar 

  • Sterne J (1969) Pharmacology and mode of action of the hypoglycemic guanidine derivatives. In: Campbell GD (ed) Oral hypoglycemic agents. Academic, New York, pp 193–245

    Google Scholar 

  • Stone D, Brown JD (1968) In vitro effects of phenformin hydrochloride: observations using isolated fat cells. Ann NY Acad Sci 148:623–630

    Article  PubMed  CAS  Google Scholar 

  • Stout RW, Brunzell JD, Porte D, Bierman EL (1974) Effect of phenformin on lipid transport in hypertriglyceridemia. Metabolism 23:815–828

    Article  PubMed  CAS  Google Scholar 

  • Strohfeldt P, Ehrhardt M, Kettl H, Weinges KF (1972) Experimental studies on the glycogen content and the incorporation of radioglucose into the glycogen of the diaphragm of rats after initial and short term administration of buformin. Diabetologia 8:37–40

    Article  PubMed  CAS  Google Scholar 

  • Strohfeldt P, Kettl H, Obermaier U, Weinges KF (1975) Immediate effects of buformin on muscle metabolism. Horm Metab Res 7:355

    Article  PubMed  CAS  Google Scholar 

  • Strohfeldt P, Strubel-Obermaier U, Kettl H (1977) Effect of buformin on the regulation of glycogen metabolism in the skeletal muscle of normal rats. Arzneimittelforschung 27:1034–1036

    PubMed  CAS  Google Scholar 

  • Sum CF, Webster JM, Johnson AB, Catalano C, Cooper BG, Taylor R (1992) The effect of intravenous metformin on glucose metabolism during hyperglycemia in type 2 diabetes. Diabetic Med 9:61–65

    Article  PubMed  CAS  Google Scholar 

  • Tagliamonte P, Sirigu F, Corsini GU, Muntoni S (1973) Influence of phenformin on plasma FFA turnover in man. Riv Farmacol Ter 4:151–157

    CAS  Google Scholar 

  • Tessari P, Biolo G, Bruttomesso D, Inchiostro S, Panebianco G, Fongher C, Sabadin L, Vettore M, Carlini M, Tiengo A (1990) Metformin treatment does not affect amino acid metabolism in type II diabetes. Diabetologia 33:A126

    Article  Google Scholar 

  • Thorne DP, Lockwood D (1990) Effects of insulin biguanide antihyperglycemic agents and β-adrenergic agonists on pathways of myocardial proteolysis. Biochem J 266:713–718

    PubMed  CAS  Google Scholar 

  • Tomkin GH (1973) Malabsorption of vitamin B12 in diabetic patients treated with Phenformin: a comparison with metformin. Br Med J 3:673–675

    Article  PubMed  CAS  Google Scholar 

  • Tranquada R, Kleeman C, Brown J (1959) The acute effect of DBI on human hepatic intermediary metabolism. Clin Res 7:110–111

    Google Scholar 

  • Tranquada RE, Kleeman C, Brown J (1960) Some effects of phenethylbiguanide on human hepatic metabolism as measured by hepatic vein catheterization. Diabetes 9:207–214

    PubMed  CAS  Google Scholar 

  • Tremoli E, Ghiselli G, Maderna P, Colli S, Sirtori CR (1982) Metformin reduces platelet hypersensitivity in hypercholesterolemic rabbits. Atherosclerosis 41:53–60

    Article  PubMed  CAS  Google Scholar 

  • Turnbow MA, Smith LK, Garner CW (1995) The oxazolidinedione CP-92, 768–2 partially protects IRS-1 from dexamethasone down-regulation in 3T3-L1 adipocytes. Endocrinology 136 (in press)

    Google Scholar 

  • Ubl JJ, Chen S, Stucki JW (1993) Inhibition of hormone-induced cytosolic (Ca++) oscillations by biguanides in single rat hepatocytes. Experientia 49:260

    Google Scholar 

  • Ubl JJ, Chen S, Stucki JW (1994) Antidiabetic biguanides inhibit hormone-induced intracellular Ca++ concentration oscillations in rat hepatocytes. Biochem J 304:561–567

    PubMed  CAS  Google Scholar 

  • Vague P, Juhan-Vague I, Alessi MC, Badier C, Valadier J (1987) Metformin decreases the high phasminogen activator inhibition capacity, plasma insulin and triglyceride levels in non-diabetic obese subjects. Thromb Haemost 57:326–328

    PubMed  CAS  Google Scholar 

  • Valensi P, Attalah M, Behar A, Attali JR (1994) Capillary permeability in diabetes. Sang Thromb Vaisseaux 6:473–481

    Google Scholar 

  • Velazquez EM, Mendoza S, Glueck CJ, Hamer T, Sosa F (1993) Metformin in polycystic ovary syndrome reduces hyperinsulinemia, hyperandrogenemia and systolic blood pressure, allowing normal menses and pregnancy. Circulation 88 [Suppl]:1928

    Google Scholar 

  • Verma S, Bhanot S, McNeill JH (1994) Metformin decreases plasma insulin levels and systolic blood pressure in spontaneously hypertensive rats. Am J Physiol 267:H1250–H1253

    PubMed  CAS  Google Scholar 

  • Vidon N, Chaussade S, Noel M, Franchisseur C, Huchet B, Bernier JJ (1988) Metformin in the digestive tract. Diabetes Res Clin Pract 4:223–229

    Article  PubMed  CAS  Google Scholar 

  • Weichert W, Breddin HK (1988) Antithrombotic effects of metformin in laser injured arteries. Diabete Metab 14:540–543

    Google Scholar 

  • Wick AN, Stewart CJ, Serif GS (1960) Tissue distribution of 14C-labeled beta-phenethylbiguanide. Diabetes 9:163–166

    PubMed  CAS  Google Scholar 

  • Widen EIM, Eriksson JG, Groop LC (1992) Metformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM. Diabetes 41:354–358

    Article  PubMed  CAS  Google Scholar 

  • Wiernsperger N (1994) Vascular defects in the aetiology of peripheral insulin resistance in diabetes. A critical review of hypotheses and facts. Diabetes Metab Rev 10:287–307

    Article  PubMed  CAS  Google Scholar 

  • Wiernsperger N, Rapin JR (1995) Metformin-insulin interactions: from organ to cerll. Diabetes Metab Rev 11 (Suppl 1):S3–S12

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Bailey CJ (1990) Sites of Metformin-stimulated glucose metabolism. Biochem Pharmacol 39:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Bailey CJ (1991) Reconsideration of inhibitory effect of metformin on intestinal glucose absorption. J Pharm Pharmacol 43:120–121

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Bailey CJ (1994) Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24:49–57

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Wyre ND, Bailey CJ (1991) Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 43:442–444

    Article  PubMed  CAS  Google Scholar 

  • Williams RH, Tyberghein J, Hyde PM, Nielsen RL (1957) Studies related to the hypoglycemic action of phenethylbiguanide. Metabolism 6:311–319

    PubMed  CAS  Google Scholar 

  • Williams RH, Tanner DC, Odell WD (1958) Hypoglycemic actions of phenethyl-, amyl-, and isoamyldiguanide. Diabetes 7:87–92

    PubMed  CAS  Google Scholar 

  • Williamson JR, Walker RS, Renold AE (1963) Metabolic effects of phenethylbiguanide (DBI) on the isolated perfused rat heart. Metabolism 12:1141–1152

    PubMed  CAS  Google Scholar 

  • Wilson AP, Nathan M, Betteridge DJ (1986) Effect of metformin on platelet aggregation and prostanoid generation in vitro. Diabetologia 29 [Suppl]:607A

    Google Scholar 

  • Wollen N, Bailey CJ (1988) Inhibition of hepatic gluconeogenesis by metformin. Biochem Pharmacol 37:4343–4358

    Article  Google Scholar 

  • Worm D, Handberg A, Vinten J, Beck-Nielsen H (1994) A method for measurement of muscle phosphotyrosine phosphatase activity towards the human insulin receptor applied on insulin resistant obese rats. 15th IDF Congress Kobe

    Google Scholar 

  • Yoa RG, Rapin JR, Wiernsperger N, Martinand A, Belleville I (1993) Demonstration of defective glucose uptake and storage in erythrocytes from non-insulin dependent diabetic patients and effects of metformin. Clin Exp Pharmacol Physiol 20:563–567

    Article  PubMed  CAS  Google Scholar 

  • Yoh YA (1967) Distribution of n-butylbiguanide-C hydrochloride in mouse tissues. Jpn J Pharmacol 17:439–449

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Pugazhenti S, Khandelwal RL (1994) Effects of metformin on glucose and glucagon regulated gluconeogenesis in cultured normal and diabetic hepatocytes. Biochem Pharmacol 48:949–954

    Article  PubMed  CAS  Google Scholar 

  • Zaibi MS, Rapin JR, Wiernsperger N, Padieu P (1994) Metformin increases albumin production of primary cultured rat hepatocytes in a hormone-selective manner. Diabetologia 37 [Suppl 1]:631

    Google Scholar 

  • Zamman HY, Soltis EE, Sowers JR, Peuler JD (1994) Effects of insulin-sensitizing drugs on arterial contractile responses. Hypertension 24:P97

    Article  Google Scholar 

  • Zarjevski N, Doyle P, Jeanrenaud B (1992) Muscle insulin resistance may not be a primary etiological factor in the genetically obese fa/fa rat. Endocrinology 130:1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Zavaroni I, Dall’aglio E, Coscelli C (1981) Effect of metformin on dietary induced hypertriglyceridemia in the rat. Diabetologia 21:345

    Google Scholar 

  • Zavaroni I, Dall’aglio E, Bruschi F, Alpi O, Coscelli C, Butturini U (1984) Inhibition of carbohydrate induced hypertriglyceridemia by Metformin. Horm Metab Res 16:85–87

    Article  PubMed  CAS  Google Scholar 

  • Zemel MB, Reddy S, Shehin S, Lockette W, Sowers JR (1990) Vascular reactivity in Zucker obese rats: role of insulin resistance. J Vasc Med Biol 2:81–85

    Google Scholar 

  • Zhang Z, Wiernsperger N, Radziuk J (1994) Metformin reduces both lactate uptake and gluconeogenesis by the perfused rat liver. Diabetologia 37 [Suppl 1]:239

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiernsperger, N.F. (1996). Preclinical Pharmacology of Biguanides. In: Kuhlmann, J., Puls, W. (eds) Oral Antidiabetics. Handbook of Experimental Pharmacology, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09127-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09127-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62456-1

  • Online ISBN: 978-3-662-09127-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics