Skip to main content

The Advantages and Limitations of Cell Culture as a Model of Bone Formation

  • Conference paper
Novel Approaches to Treatment of Osteoporosis

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 25))

  • 79 Accesses

Abstract

Despite its rather unglamorous image, bone is a remarkably complex and versatile organ, the correct functioning of which is essential for our general health. Bone formation comprises a complex but ordered sequence of events, beginning with the proliferation of chondrogenic and osteogenic precursor cells followed by their subsequent differentiation, ultimately leading to extracellular matrix (ECM) maturation and mineralization. Under normal circumstances, this process is tightly controlled by a combination of the endocrine system and locally acting growth factors. Bone can also respond to physical stimuli and removal of this stimulus, as experienced by astronauts in zero gravity or by patients undergoing extended bed-rest, results in a net loss of bone. Sometimes, the mechanisms controlling bone growth are defective, e.g., in nonunion of fractures and osteoporosis. Sometimes bone development is defective, as in achondroplasia, caused by a lack of chondrocytes in the growth plates of long bones resulting in short limbs, or gigantism, which is due to the failure of the growth plates to fuse at puberty allowing the bones to grow throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bab I, Howlett CR, Ashton BA, Owen ME (1984) Ultrastructure of bone and cartilage formed in vivo in diffusion chambers: Clin Orthop 187: 243–54

    PubMed  Google Scholar 

  • Bellows CG, Aubin JE (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133: 8–13 1989

    Google Scholar 

  • Bellows CG, Heersche JN, Aubin JE (1990) Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol 140: 132–8

    Article  PubMed  CAS  Google Scholar 

  • Bellows CG, Ishida H, Aubin JE, Heersche JN (1990) Parathyroid hormone reversibly suppresses the differentiation of osteoprogenitor cells into functional osteoblasts. Endocrinology 127: 3111–6

    Article  PubMed  CAS  Google Scholar 

  • Bellows CJ, Aubin JE, Heersche JNM (1987) Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvarial cells in vitro. Endocrinology 121: 1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Bennett JH, Joyner CJ, Triffitt JT, Owen ME (1991) Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99: 131–9

    PubMed  Google Scholar 

  • Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102: 341–351

    PubMed  CAS  Google Scholar 

  • Bhargava U, Bar-Lev M, Bellows CG, Aubin JE (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9: 155–63

    Article  PubMed  CAS  Google Scholar 

  • Bodine PV, Trailsmith M, Komm BS (1996a) Development and characterization of a conditionally transformed adult human osteoblastic cell line. J Bone Miner Res 11: 806–819s

    Article  PubMed  CAS  Google Scholar 

  • Bodine PV, Vernon SK, Komm BS (1996b) Establishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone. Endocrinology, 137: 4592–604

    Article  PubMed  CAS  Google Scholar 

  • Boyce BF, Aufdemorte TB, Garrett IR, Yates AJP (1989) Mundy, GR Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125: 1142–1150

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, Centrella M, Burch W, McCarthy T (1989) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Clarke E, McCann SR, (1991) Stromal colonies can be grown from Nonadherent cells in human long-term bone marrow cultures. Eur J Haematol 46: 296–300

    Article  PubMed  CAS  Google Scholar 

  • Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 122: 1146–1150

    Google Scholar 

  • Egrise D, Martin D, Vienne A, Neve P, Schoutens (1992) The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 13: 355–61

    CAS  Google Scholar 

  • Erben RG, Scutt A, Miao D, Kollenkirchen U, Haberey M (1997) Short-term treatment of rats with high-dose calcitriol stimulates bone formation in vivo and increases the numbers of osteoblast precursor cells in the bone marrow. Endocrinology 138: 4629–4635

    Article  PubMed  CAS  Google Scholar 

  • Falla N, Van Vlasselar P, Bierkens J et al. (1993) Characterisation of a 5fluorouracil-enriched osteoprogenitor population of the murine bone marrow. Blood 82: 3580–3591

    PubMed  CAS  Google Scholar 

  • Flanagan AM, Chambers TJ (1992) Stimulation of bone nodule formation in vitro by prostaglandins El and E2. Endocrinology 130: 443–8

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ (1990) Osteogenic stem cells in the bone marrow. J Bone Miner Res 7: 243–272

    Google Scholar 

  • Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop 248: 283–93

    PubMed  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63: 378–383

    Article  PubMed  CAS  Google Scholar 

  • Harris SA, Enger RJ, Riggs BL (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10: 178–186

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636

    Article  PubMed  CAS  Google Scholar 

  • Hock JM, Gera I, Fonseca J, Raisz LG (1988) Human parathyroid hormone (1–34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology 122: 2899–2904

    Article  PubMed  CAS  Google Scholar 

  • Houghton A, Oyajobi BO, Foster GA, Russell RGG, Stringer BMJ (1998) Immortalization of human marrow stromal cells by retroviral transduction with a temperature-sensitive oncogene: identification of bipotential precursor cells capable of directed differentiation to either an osteoblast or adipocyte phenotype. Bone 22: 7–16s

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Tsuji Y, Nakashima T, Ishibashi S (1984) Progress of aging in human diploid cells transformed with a tsA mutant of simian virus 40. Exp Cell Res 150: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Bellows CG, Aubin JE, Heersche JNM (1987) Characterisation of the 1,25-(OH)203-induced inhibition of bone nodule formation in longterm cultures of fetal rat calvaria cells. Endocrinology 132: 61–66

    Article  Google Scholar 

  • Jat PS, Sharp PA (1986) Large T antigens of SV40 and Polyomavirus effeciently establish primary fibroblasts. J Virol 59: 746–750

    PubMed  CAS  Google Scholar 

  • Jee WSS, Ma YF, Li M, Liang X, Lin BY, Li XJ, Ke HZ, Mori S, Setterberg RB, Kimmel DB (1994) Sex steroids and prostaglandins in bone metabolism. Ernst Schering Research Foundation workshop 9, Sex steroids and bone, Springer-Verlag, Berlin, Heidelberg, New York, pp 119–150

    Google Scholar 

  • La Croix P (1951) The organisation of bones. Blakiston, Philadelphia

    Google Scholar 

  • Leboy PS, Beresford JN, Devlin C, Owen (1991) ME Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol 146: 370–8

    CAS  Google Scholar 

  • Liang CT, Barnes J, Seedor JG, Quartuccio HA, Bolander M, Jeffrey JJ, Rodan GA (1992) Impaired bone activity in aged rats: alterations at the cellular and molecular levels. Bone 13: 435–41

    Article  PubMed  CAS  Google Scholar 

  • Long MW, Williams JL, Mann KG (1990) Expression of human bone-related proteins in the hematopoietic microenvironment. J Clin Invest 86: 1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Macieira-Coelho A (1988) Biology of normal proliferating cells in vitro — rele- vance for in vivo aging. Interdisciplinary Topics Gerontology 23: 1–212

    Google Scholar 

  • Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained form bone marrow of young rats. Cell Tiss Res 254: 317–330

    CAS  Google Scholar 

  • Marusic A, Raisz LG (1991) Cortisol modulates the actions of interleukin-1 alpha on bone formation, resorption, and prostaglandin production in cultured mouse parietal bones Endocrinology 129: 2699–2706

    CAS  Google Scholar 

  • Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Kato K (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9: 73–80

    Article  PubMed  CAS  Google Scholar 

  • McCulloch CA, Fair CA, Tenenbaum HC, Limeback H, Homareau R (1990) Clonal distribution of osteoprogenitor cells in cultured chick periostea: functional relationship to bone formation. Dev Biol 140: 352–61

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Tsukuda R, Mayahara H (1995) Effects of basic fibroblast growth factor (bFGF) on bone formation in growing rats. Bone 16: 367–73

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, Fukumoto S, Matsumoto T (1995) Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 136: 1276–84

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Yamaguchi A, Tanizawa T, Endo N, Mashiba T, Uchiyama Y, Suda T, Yoshiki S, Takahashi HE (1994) Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proiliferation and differentiation of osteoprogenitor cells in the bone marrow. Bone 15: 717–723

    Article  PubMed  CAS  Google Scholar 

  • Noff D, Pitaru S, Savion N (1989) Basic fibroblast growth factor enhances the capacity of bone marrow cells to form bone-like nodules in vitro. FEBS Lett 250: 619–621

    Article  PubMed  CAS  Google Scholar 

  • Norrdin RW, Jee WSS, High WB (1990) The role of prostaglandins in bone in vivo. Prostaglandins Leukot Essent Fatty Acids 41: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA (ed) Bone and mineral research, vol. 3, Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  • Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S,Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143: 420–30

    CAS  Google Scholar 

  • Pitaru S, Kotov-Emeth S, Noff D, Kaffuler S, Savion N (1993) Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 8: 919–929

    Article  PubMed  CAS  Google Scholar 

  • Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56: 123–9

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Endocrinology 126: 1654–1659

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Fall PM, Gabbitas BY, McCarthy TL, Kream BE, Canalis E (1993) Effects of prostaglandin E2 on bone formation in cultured fetal rar calvariae: Role of insulin-like growth factor-I. Endocrinology 133: 1504–1514

    Google Scholar 

  • Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I (1994) Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 161: 218–228

    Article  PubMed  Google Scholar 

  • Satomura K, Nagayama M (1991) Ultrastructure of mineralized nodules formed in rat bone marrow stromal cell culture in vitro. Acta Anat 142: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Scutt A, Bertram P (1995) Bone marrow cells are targets for the anabolic actions of PGE2: Induction of a transition from nonadherent to adherent osteoblast precursors. J Bone Miner Res 10: 474–487

    Google Scholar 

  • Scutt A, Kollenkirchen U, Bertram P (1996) The effect of age and ovariectomy on fibroblastic colony-forming unit numbers in rat bone marrow. Calc Tiss Int 59: 309–310

    Article  CAS  Google Scholar 

  • Scutt A, Zeschnick M, Bertram P (1995) PGE2 induces the transition from nonadherent to adherent bone marrow mesenchymal precursor cells via a cAMP/EP2 mediated mechanism. Prostaglandins 49: 383–395

    PubMed  CAS  Google Scholar 

  • Simmons DJ (1995) The in vivo role of bone marrow fibroblast-like stromal cells. Calc Tissue Int 58: 129132

    Google Scholar 

  • Spelsberg TC, Harris SA, Riggs BL (1995) Immortalized osteoblast cell systems (new human fetal osteoblast systems). Calcif Tissue Int (Suppl 1 ) 56: S18 — S21

    Google Scholar 

  • Stamps AC, Davies SC, Burman J, OHare MJ (1994) Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct. Int J Cancer 57: 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4: 3111–23

    PubMed  CAS  Google Scholar 

  • Takada M, Yamamoto R, Morita R (1994) Chronic intramedullary infusion of interleukin-1 alpha increases bone mineral content in rats. Calcif Tiss Int 55: 103–108

    Article  CAS  Google Scholar 

  • Theuns HM, McOsker JE, Offerman E, DSouza SM (1994) Effects of parathyroid hormone and prostaglandin E2 on bone cell proliferation and differentiation in aged rats. J Bone Miner Res (Suppl 1 ) 9: S395

    Google Scholar 

  • Thomson BM, Bennett J, Dean V, Triffitt J, Meikle MC, Loveridge N (1993) Preliminary characterisation of porcine bone marrow stromal cells: skeletogenic potential, colony-forming activity, and response to dexamethasone, transforming growth factor 13, and basic fibroblast growth factor. J Bone Miner Res 10: 1173–1183

    Google Scholar 

  • Turksen K, Aubin JE (1991) Positive and negative immunoselection for enrichment of two classes of osteoprogenitor cells. J Cell Biol 114: 373–84

    Article  PubMed  CAS  Google Scholar 

  • Turksen K, Grigoriadis AE, Heersche JN, Aubin JE (1990) Forskolin has biphasic effects on osteoprogenitor cell differentiation in vitro. J Cell Physiol 142: 61–9

    Article  PubMed  CAS  Google Scholar 

  • Urist M R (1965) Bone formation by autoinduction. Science 150: 893–9

    Article  PubMed  CAS  Google Scholar 

  • Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20: 521–526

    Article  PubMed  CAS  Google Scholar 

  • Yoon K, Buenaga R, Rodan GA (1987) Tissue specificity and developmental expression of rat osteopontin. Biochem Biophys Res Commun 148: 1129–36

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobson, K. et al. (1998). The Advantages and Limitations of Cell Culture as a Model of Bone Formation. In: Russell, R.G.G., Skerry, T.M., Kollenkirchen, U. (eds) Novel Approaches to Treatment of Osteoporosis. Ernst Schering Research Foundation Workshop, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09007-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09007-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09009-1

  • Online ISBN: 978-3-662-09007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics