Skip to main content

Optical Detection of Surface Damage

  • Chapter
Nondestructive Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

In many applications, the onset of damage occurs at the component surface due to plastic deformation, fretting, wear, corrosion, or crack nucleation. One result of these processes is a change in the surface topography. Therefore, the first step in nondestructive evaluation of a component is a thorough evaluation of the surface conditions. Inspection techniques that characterize the damage extent on the surface often present the results as a fraction of the component surface area. For damage originating from environmental or mechanical conditions, the severity of the defect or damage can also be described quantitatively by the three-dimensional surface topography. When using many common inspection methods, information regarding the depth of penetration into the surface layers, or protrusion above the surface is difficult to obtain. In addition, when the defects are of submicron or nanometer scale, high resolution three-dimensional inspection techniques are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WYKO (1996) Surface profilers technical reference manual. WYKO Corporation, Tuscon AZ

    Google Scholar 

  2. Veeco Instruments, 10/2/2002, http://www.veeco.com

  3. Caber P (1997) Interferometer characterizes laser-textured steel. Laser Focus World: 157–158

    Google Scholar 

  4. Bowe B, Toal V (1998) White light interferometric surface profiler. Opt Engn 37(6): 1796–1799

    Article  ADS  Google Scholar 

  5. Raz E (1996) A multiple white light interferometer. Rev Sci Instrum. 67(10):3416–3419

    Article  ADS  Google Scholar 

  6. Wallace WW, Hoeppner DW (1985) AGARD Corrosion Handbook. Vol. 1, Aircraft Corrosion: Causes and Case Histories. AGARDograph No.278, NATO p. 101

    Google Scholar 

  7. Collins JA (1981) Failure of Materials. In: John Wiley & Sons Mechanical Design, New York

    Google Scholar 

  8. Antoniou RA, Radtke TC (1997) Mat Sci Eng A237:229–240

    Article  Google Scholar 

  9. Hutson AL, Nicholas T (1999) Int J of Fatigue 21:663–669

    Article  Google Scholar 

  10. Hutson A (1999) unpublished research conducted at Wright-Patterson Air Force Base

    Google Scholar 

  11. Chen GS, Wan KC, Gao M, Wei RP, Flournoy TH (1996) Transition for Pitting to Fatigue Crack Growth-Modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy. Materials Science and Engineering A219:126

    Article  Google Scholar 

  12. Piascik RS, Willard SA (1994) The Growth of Small Corrosion Fatigue Cracks in Alloy 2024. Fatigue and Fracture of Engineering Materials and Structures 17(11):1247–1248

    Google Scholar 

  13. Ahn SH, Lawrence FV, Metzger NM (1992) Fatigue Fracture. Eng Mater Struct 15:625

    Article  Google Scholar 

  14. Simon LB (1999) Influence of Pitting Corrosion on the Loss of Structural Integrity in Aluminum Alloy 2024-T3. Master’s Thesis, University of Dayton, Dayton, OH

    Google Scholar 

  15. Wilson L (1995) Quantitative Analysis: Gravimetric, Volumetric and Instrumental Analysis. 3rd edn. Mohican Textbook Publishing Co. Loudonville, Ohio, pp. 50–58

    Google Scholar 

  16. Newman JC, Raju JIS (1983) Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies. Fracture Mechanics: Fourteenth Symposium-Volume 1: Theory and Analysis. ASM STP 791 pp. I-238–I-265

    Google Scholar 

  17. Shankaran K (1998) Validation of Accelerated Corrosion Tests for Aging Aircraft Life Prediction: Effects of Pitting Corrosion on the Mechanical Behavior of 7075-T6 Aluminum Alloy. Final Report, F33615–96-D-5835, Delivery Order: 0026–02, AFRL, Wright-Patterson AFB, OH

    Google Scholar 

  18. Bray GH, Bucci RJ, Colvin EL, Kulak M (1997) Effect of Prior Corrosion on the S/N Fatigue Performance of Aluminum Alloys 2024-T3 and 2524-T3, Effects of the Environment on the Initiation of Crack Growth. ASTM STP 1298, p. 8

    Google Scholar 

  19. Shimojo M, Chujo M, Higo Y, Shigetomo (1998) Int J Fatigue 20(5):365–371

    Article  Google Scholar 

  20. Harmain GA, Provan JW (1997) Theoretical and Applied Fracture Mechanics 26:63–79

    Article  Google Scholar 

  21. Sanford RJ, Daily JW (1979) Eng Fract Mech 11:621–633

    Article  Google Scholar 

  22. Smith CW, Post D, Hiatt G, Nicoletto G (1983) Experimental Mechanics 23(1):15–20

    Article  Google Scholar 

  23. Kang BSJ, Zhuang YN, Liu YK (1992) Experimental Mechanics:309–315

    Google Scholar 

  24. Krishnamoorthy H, Tippur HV (1999) Experimental Techniques:22–25

    Google Scholar 

  25. Dadkhah MS, Kobayashi AS, Wang FX, Grasser DL (1998) Proc. VI Int. Cong Exp Mech, pp. 227

    Google Scholar 

  26. Bastawros AF, Kim KS (2000) Journal of the Mechanics and Physics of Solids 48:67–98

    Article  ADS  MATH  Google Scholar 

  27. Dudderar TD, Gorman HJ (1973) Experimental Mechanics 13 (4):145–149

    Article  Google Scholar 

  28. Krishnaswamy S, Hareesh V, Tippur HV, Roaskis AJ (1992) J Mech Phys Solids 40(2):339–372

    Article  ADS  Google Scholar 

  29. Ramaswamy S, Tippur HV, Xu L (1993) Experimental Mechanics:218–227

    Google Scholar 

  30. Sanford RJ (1993) Experimental Mechanics:241–247

    Google Scholar 

  31. Schroeder J, Shell EB, Matikas T, Eylon D (1999) Development of methods to observe fatigue damage through surface characteristics. SPIE Conference on Nondestructive Evaluation of Aging Materials and Composites, volume 3585, Paper No. 15

    Google Scholar 

  32. Eylon D, Bania PJ (1978) Metallurgical Transactions A9:1273–1279

    Article  ADS  Google Scholar 

  33. Hertzberg RW (1983) Deformation and Fracture Mechanics of Engineering Materials. In: John Wiley & Sons, New York, pp. 279–280

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shell, E.B. et al. (2004). Optical Detection of Surface Damage. In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics