Skip to main content

Reynolds Averaged and Large Eddy Simulation Modeling for Turbulent Combustion

  • Conference paper

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 5))

Abstract

Combustion is a widely used technique in energy transformation and is encountered in many practical systems such as heaters, domestic or industrial furnaces, thermal power plants, automotive and aeronautic engines, rocket engines,... In most applications, combustion occurs in turbulent gaseous flows. Accordingly, the interaction between turbulence and combustion has to be described. Combustion phenomena may be characterized by:

  • a strong and irreversible heat release. Heat release occurs in very thin zones (typical flame thicknesses δ L are about 0.1 to 1 mm) and induces strong temperature gradients (temperature ratio between burnt and unburnt gases, T b /T u , are about 5 to 7) leading to strong heat transfers and large density variations.

  • a stiff highly non linear reaction rate (Arrhenius law).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poinsot T., Trouvé A., Candel S., Progress in Energy and Combustion Science 21 (1996) 531.

    Article  Google Scholar 

  2. Poinsot T., “Using direct numerical simulation to understand premixed turbulent combustion”, Invited lecture, Twenty sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1996 ).

    Google Scholar 

  3. Direct numerical simulation for turbulent reacting flows (Baritaud T., Poinsot T. and Baum M. Eds, Editions Technip, Paris, 1996).

    Google Scholar 

  4. Abdel-Gayed R.G., Bradley D., Hamid M.N., Lawes M., Twentieth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1984 ) p. 505.

    Google Scholar 

  5. Abdel-Gayed R.G., Bradley D., Combust. Flame 76 (1989) 213.

    Article  Google Scholar 

  6. Yakhot V., Orszag C.G., Thangam S., Gatski T.B. and Speziale C.G., Phys. Fluids A 4 (1992) 1510.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gouldin F.C., “Combustion intensity and burning rate integral of premixed flames”, Twenty sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1996 ).

    Google Scholar 

  8. Damköhler G., Z. Elektrochem. 46 (1940) 610.

    Google Scholar 

  9. Williams F.A., Combustion Theory ( Benjamin Cummings, Menlo Park, 1985 ).

    Google Scholar 

  10. Bray K.N.C., Libby P.A., Masuya G., Moss J.B., Combust. Sci. Tech. 25 (1981) 127.

    Article  Google Scholar 

  11. Shepherd I.G., Moss J.B., Bray K.N.C. Nineteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1982 ) p. 423.

    Google Scholar 

  12. Veynante D., Trouvé A., Bray K.N.C., Mantel T., to be published in J. Fluid Mech.,1996.

    Google Scholar 

  13. Veynante D., Poinsot T., Annual Research Briefs (Center for Turbulence Research, Stanford University — Nasa-Ames, 1995 ).

    Google Scholar 

  14. Duclos J.M., Veynante D., Poinsot T., Combust. Flame 95 (1993) 101.

    Article  Google Scholar 

  15. Bray K.N.C., Champion M., Libby P.A., Combust. Sci. Tech. 55 (1987) 139.

    Article  Google Scholar 

  16. Bray K.N.C., Complex Chemical Reactions, ( Warnatz J. and Jäger W., Eds., Springer Verlag, 1987 ).

    Google Scholar 

  17. Bailly P., “Contribution à l’étude de l’interaction turbulence - combustion dans les flammes turbulentes de prémélange à l’aide de modèles du second ordre”, Ph’D thesis, Université de Poitiers, 1996.

    Google Scholar 

  18. Bailly P., Garréton D., Simonin O., Bruel P., Champion M., Deshaies B., Duplantier S., Sanquer S., “Experimental and numerical study of a premixed flame stabilized by a rectangular section cylinder”, Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1996 ).

    Google Scholar 

  19. Veynante D., Piana J., Duclos J.M., Martel C., “Experimental analysis of flame surface density models for premixed turbulent combustion”, Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1996 ).

    Google Scholar 

  20. Villasenor R., Pitz R.W., Chen J.Y., “Interaction between chemical reaction and turbulence in supersonic nonpremixed H2-air combustion”, 28th Aerospace Science Meeting, Reno, Nevada 1991, AIAA paper 91–0375.

    Google Scholar 

  21. Nieuwstadt F.T.M., “The large-eddy simulation of the dispersion of pollutants in the atmospheric boundary layer”, New Tools in Turbulence Modelling, O. Métais and J. Ferziger org., Ecole de Physique des Houches, May 21–31 1996.

    Google Scholar 

  22. Meeder J.P., Nieuwstadt F.T.M., “Subgrid-scale segregation of chemically reactive species in a neutral boundary layer”, Second ERCOFTAC Worshop on direct and large eddy simulation, Grenoble, September 16–19 1996.

    Google Scholar 

  23. Borghi R, Destriau M., La combustion et les flammes (Editions Technip, Paris, 1996), in french.

    Google Scholar 

  24. Borghi R., Recent Advances in the Aerospace Sciences (1985) pp. 117–138.

    Google Scholar 

  25. Peters N., Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1986) p. 1231–1250.

    Google Scholar 

  26. Peters N., Franke C., Springer Verlag Series in Synergetics 48 (1990) 40.

    Article  Google Scholar 

  27. Poinsot T., Veynante D., Candel S., J. Fluid Mech. 228 (1991) 561.

    ADS  Google Scholar 

  28. Roberts W.L., Driscoll J.F., Drake M.C., Goss L.P., Comb. Flame 94 (1993) 58.

    Article  Google Scholar 

  29. Cuenot B., Poinsot T., Twenty-fifth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1994 ) p. 13–83.

    Google Scholar 

  30. Spalding D.B., Combustion and Mass Transfer ( Pergamon Press, Oxford, 1978 ).

    Google Scholar 

  31. Bray K.N.C., Champion M., Libby P.A., Twenty-second Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1988 ) p. 763.

    Google Scholar 

  32. Gouldin F.C., Bray K.N.C., Chen J.Y., Combust. Flame 77 (1989) 241.

    Article  Google Scholar 

  33. Gülder O.L., Smallwood G.J., Combust. Flame 103 (1995) 107.

    Article  Google Scholar 

  34. Marble F.E., Broadwell J.E., The coherent flame model of non-premixed turbulent combustion. Project Squid Report, TRW-9-PU, 1977.

    Google Scholar 

  35. Pope S.B., Int. J. Engin. Sci. 26 (1988) 445.

    Article  MathSciNet  MATH  Google Scholar 

  36. Candel S.M., Poinsot T.J., Combust. Sci. Tech. 70 (1990) 1.

    Article  Google Scholar 

  37. Cant R.S., Pope S.B., Bray K.N.C., Twenty-third Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1990 ) p. 809.

    Google Scholar 

  38. Trouvé A., Poinsot T., J. Fluid Mech. 278 (1994) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Vervisch L., Bidaux E., Bray K.N.C., Kollmann W., Phys. Fluids A 7 (1995) 2496.

    Article  ADS  MATH  Google Scholar 

  40. Poinsot T., Echekki T., Mungal M.G., Combust. Sci. Tech. 81 (1992) 45.

    Article  Google Scholar 

  41. Veynante D., Duclos J. M., Piana J., Twenty-fifth, Symposium (Interna-tional) on Combustion (The Combustion Institute, Pittsburgh, 1994 ) p. 1249.

    Google Scholar 

  42. Pope S.B., Prog. Energ. Combust. Sci. 11 (1985) 119.

    Article  MathSciNet  ADS  Google Scholar 

  43. Dopazo C., Turbulent reacting flows (Libby P.A. and Williams F.A. Eds, Academic Publisher, 1994 ) p. 375.

    Google Scholar 

  44. Magnussen B.F., Mjertager B.H., Sixteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1976 ) p. 719.

    Google Scholar 

  45. Fichot F., Delhaye B., Veynante D., Candel S., Twenty-fifth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1994 ) p. 1273.

    Google Scholar 

  46. Van Kalmthout E., Veynante D., Candel S., “Direct numerical simulation analysis of flame surface density in non premixed turbulent combustion”, Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996.

    Google Scholar 

  47. Vervisch L., Kollmann W., Bray K.N.C., Mantel T., Proceedings of the Summer Program ( Center for turbulence Research, Stanford, 1994 ) p. 125.

    Google Scholar 

  48. Menon S., Jou W.H., Comb. Sci. Tech. 75 (1991) 53.

    Article  Google Scholar 

  49. Fureby C., Löfström C., Twenty fifth Symposium (International) on Combustion ( The Combustion Institute, Pittsburg, 1994 ) p. 1257.

    Google Scholar 

  50. Fureby C., Möller S.I., AIAA J. 33 (12) (1995) 2339.

    Article  ADS  MATH  Google Scholar 

  51. Germano M., Maflio A., Sello S., Mariotti G., “On the extension of the dynamic modelling procedure to turbulent reacting flows”, Second ERCOFTAC workshop on Direct and Large Eddy Simulation, Septembre 16–19, 1996, Grenoble, France.

    Google Scholar 

  52. Germano M., Piomelli U., Moin P., Cabot W.H., Phys. Fluids 7 (3) (1991) 1760–1765.

    ADS  Google Scholar 

  53. Kerstein A. R., Comb. Sci. Tech. 60 (1988) 391.

    Article  Google Scholar 

  54. Kerstein A.R., Comb. Flame 75 (1989) 397.

    Article  Google Scholar 

  55. Kerstein A.R., J. Fluid Mech. 216 (1990) 411.

    Article  ADS  MATH  Google Scholar 

  56. Kerstein A.R., J. Fluid Mech. 231 (1991) 361.

    Article  ADS  MATH  Google Scholar 

  57. Kerstein A.R., Comb. Sci. Tech. 81 (1992) 75.

    Article  Google Scholar 

  58. Mc Murthy A., Menon S., Kerstein A.R., Twenty-fourth Symposium International on Combustion ( The Combustion Institute, Pittsburgh, 1992 ) p. 271.

    Google Scholar 

  59. Gao F., O’Brien E.E., Phys. Fluids 5 (6) (1993) 1282.

    Article  ADS  MATH  Google Scholar 

  60. McMurthy P.A., Gansauge T.C., Kerstein A.R. and Krueger S.K. Phys. Fluids A 5 (1993) 1023.

    Article  ADS  Google Scholar 

  61. McMurthy P.A., Menon S., Kerstein A.R., “A subgrid mixing model for nonpremixed turbulent combustion”, AIAA 30th Aerospace Science Meeting, Reno, Nevada, 1992, AIAA paper 92–0234.

    Google Scholar 

  62. Menon S., McMurthy P.A., Kerstein A.R., Chen J.Y. J. Prop. Power 10 (1994) 161.

    Article  ADS  Google Scholar 

  63. Calhoon W.H.,Menon S., “Subgrid modeling for large eddy simulations”, AIAA 34th Aerospace Science Meeting, Reno, Nevada, 1996, AIAA paper 96–0516.

    Google Scholar 

  64. Mathey F., Chollet J.P. “Sub-grid model of scalar mixing for large eddy simulations of turbulent flows”, Second ERCOFTAC workshop on Direct and Large Eddy Simulation, Septembre 16–19, 1996, Grenoble, France.

    Google Scholar 

  65. Menon S., Kerstein A.R., Twenty-fourth Symposium International on Combustion ( The Combustion Institute, Pittsburgh, 1992 ) p. 443.

    Google Scholar 

  66. Menon S., McMurthy P.A., Kerstein A.R., Large eddy simulation of complex engineering and geophysical flows (Galperin B. and Orzag S.A. Eds., Cambridge University Press, Cambridge, 1993 ) p. 287.

    Google Scholar 

  67. Smith T., Menon S., “Model simulations of freely propagating turbulent premixed flames”, Twenty-sixth Symposium International on Combus lion, The Combustion Institute, Pittsburgh, 1996.

    Google Scholar 

  68. Cook A.W., Riley J.J., Phys. Fluids 6 (8) (1994) 2868.

    Article  ADS  Google Scholar 

  69. Réveillon J., Vervisch L., Phys. Fluids 8 (8) (1996) 2248.

    Article  ADS  MATH  Google Scholar 

  70. Réveillon J., Vervisch L., “Dynamic subgrid PDF modeling for non premixd turbulent combustion”, Second ERCOFTAC workshop on Direct and Large Eddy Simulation, Septembre 16–19, 1996, Grenoble, France.

    Google Scholar 

  71. Butler T.D., O’Rourke P.J., Sixteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1977 ) p. 1503.

    Google Scholar 

  72. Kuo K.K., Principles of Combustion (John Wiley and Sons, 1986).

    Google Scholar 

  73. Kerstein A.R., Ashurst W.T., Williams F.A., Physical Rev. A 37 (7) (1988) 2728.

    Article  ADS  Google Scholar 

  74. Piana J., Veynante D., Candel S., Poinsot T., “Direct numerical simulation analysis of the G-equation in premixed combustion”, Second ERCOFTAC workshop on Direct and Large Eddy Simulation, Septembre 16–19, 1996, Grenoble, France.

    Google Scholar 

  75. Ashurst W.T., Ruetsch G.R., Lund T.S., Proceedings of the Summer Program ( Center for Turbulent Research, Stanford University and NasaAmes, 1994 ) p. 151.

    Google Scholar 

  76. Poinsot T., Echekki T., Mungal M.G., Comb. Sci. Tech. 81 (1991) 45.

    Article  Google Scholar 

  77. Moser V., “Large eddy simulations of turbulent premixed flames using a capturing/tracking hybrid approach”, Sixth International Conference on Numerical Combustion, New Orleans, Louisiana, March 4–6, 1996.

    Google Scholar 

  78. Menon S., “Large eddy simulation of combustion instabilities”, Sixth International Conference on Numerical Combustion, New Orleans, Louisiana, March 4–6, 1996.

    Google Scholar 

  79. Im H.T., Annual Research Briefs ( Center for Turbulent Research, Stanford University and Nasa-Ames, 1995 ) p. 347.

    Google Scholar 

  80. Gosman A. D., “Engine aerodynamics”, New Tools in Turbulence Modelling, O. Métais and J. Ferziger org., Centre de Physique des Houches, May 21–31 1996.

    Google Scholar 

  81. Piana J., “Etude de l’application de la simulation aux grandes échelles à la combustion turbulente”, Ph’D Thesis, Ecole Centrale Paris, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veynante, D., Poinsot, T. (1997). Reynolds Averaged and Large Eddy Simulation Modeling for Turbulent Combustion. In: Métais, O., Ferziger, J.H. (eds) New Tools in Turbulence Modelling. Centre de Physique des Houches, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08975-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08975-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63090-6

  • Online ISBN: 978-3-662-08975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics