Skip to main content

Ray Transform on Riemannian Manifolds

  • Conference paper

Abstract

What is integral geometry? Since the famous paper by I. Radon in 1917, it has been agreed that integral geometry problems consist in determining sonic function or a more general object (cohomology class, tensor field, etc.) on a manifold, given its integrals over submanifolds of a prescribed class. In these lectures we only consider integral geometry problems for which the above-mentioned submanifolds are one-dimensional. Strictly speaking, the latter are always geodesics of a fixed Riemannian metric, in particular straight lines in Euclidean space. The exception is Lecture 1 in which we consider an arbitrary regular family of curves in a two-dimensional domain.

Partially supported by CRDF, Grant RM2-2242

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anikonov Yu.E. and Romanov V.G. (1976). On uniqueness of definition of first-order form by its integrals over geodesics. Ill-posed Math. and Geophys. Problems. Novosibirsk, 22–27 (in Russian).

    Google Scholar 

  2. Bernstein I.N. and Gerver M.L. (1980). Conditions of distinguishability of metrics by godographs. Methods and Algorithms of Interpretation of Seismological Information. Computerized Seismology. 13. Nauka, Moscow, 50–73 (in Russian).

    Google Scholar 

  3. Besse A.L. (1978). Manifolds All of Whose Geodesics are Closed. Springer-Verlag, Berlin - Heidelberg - New Work.

    Book  MATH  Google Scholar 

  4. Eisenhart L.P. (1927). Riemannian Geometry. Princeton University Publ. Princeton.

    Google Scholar 

  5. Godbillon C. (1969). Géométrie Différentielle et Mécanique Analytique Collection Methodes. Hermann, Paris.

    Google Scholar 

  6. Gromoll D., Klinqenberg W., and Meyer W. (1968). Riemannsche Geometrie im Grossen. Springer-Verlag, Berlin - Heidelberg - New York.

    MATH  Google Scholar 

  7. Hartman Ph. (1964). Ordinary Differential Equations. John Wiley and Sons, New York etc.

    MATH  Google Scholar 

  8. Kobayashi S., and Nomizu K. (1963). Foundations of Differential Geometry. V. 1. Interscience Publishers, New York - London.

    Google Scholar 

  9. Michel R. (1981). Sur la rigidité imposée par la longueur des géodésiques. Invent. Math., 65, no. 1, 71–84.

    Article  MathSciNet  MATH  Google Scholar 

  10. Milnor J. (1963). Morse Theory Annals of Mathematical Studies, 51, Princeton University.

    Google Scholar 

  11. Mizohata S. (1977). Theory of Equations with Partial Derivatives. Mir Publ., Moscow (in Russian, translated from Japanese).

    Google Scholar 

  12. Mukhometov R.G. (1975). On the problem of integral geometry. Math. Problems of Geophysics. Akad. Nauk SSSR Sibirsk. Otdel. Vychisl. Tsentr, Novosibirsk, 6, no 2, 212–242 (in Russian).

    Google Scholar 

  13. Mukhometov R.G. (1982). On a problem of reconstructing Riemannian metrics. Siberian Math. J., 22, no. 3, 420–433.

    Article  MathSciNet  Google Scholar 

  14. Pestov L.N. and Sharafutdinov V.A. (1988). Integral geometry of tensor fields on a manifold of negative curvature. Siberian Math. J., 29, no. 3, 427–441.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharafutdinov V.A. (1989). Integral geometry of a tensor field along geodesics of a metric that is close to the Euclidean metric, Soviet Math. Dokl., 39, no. 1, 221–224.

    MathSciNet  MATH  Google Scholar 

  16. Sharafutdinov V.A. (1992). Integral geometry of a tensor field on a manifold whose curvature is bounded above. Siberian Math. J., 33, no. 3, 524–533.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sharafutdinov V.A. (1994). Integral Geometry of Tensor Fields. VSP, Utrecht, the Netherlands.

    Book  Google Scholar 

  18. Sharafutdinov V.A. (1996). An inverse problem of determining a source in the stationary transport equation for a Hamiltonian System. Siberian Math. J., 37, no. 1, 211–235.

    Article  MathSciNet  Google Scholar 

  19. Sharafutdinov V.A. (1997). Integral geometry of a tensor field on a surface of revolution. Siberian Math. J. 38, no. 3, 603 620.

    Google Scholar 

  20. Sharafutdinov V.A. and Uhlmann G. On boundary and spectral rigidity of Riemannian surfaces without focal points. To appear.

    Google Scholar 

  21. Shouten J.A. and Streik D.J. ( 1935, 1938). Einführung in die neuren Methoden der Differentialgeometrie I, II, Groningen — Batavia, Noordhoff.

    Google Scholar 

  22. Sobolev S.L. (1974). Introduction to the Theory of Cubature Formulas. Nauka, Moscow (in Russian).

    Google Scholar 

  23. Uhlenbeck G.K. and Ford G.V. (1983). Lectures in Statistical Mechanics. American Mathematical Society, Providence.

    Google Scholar 

  24. Volevic L.R. (1965). Solvability of boundary value problems for general elliptic systems. Mat. Sb. (N.S.), 68 (110), 373–416.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharafutdinov, V.A. (2004). Ray Transform on Riemannian Manifolds. In: Bingham, K., Kurylev, Y.V., Somersalo, E. (eds) New Analytic and Geometric Methods in Inverse Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08966-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08966-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07379-3

  • Online ISBN: 978-3-662-08966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics