Skip to main content

Nanoscale Optical Probes of Ferroelectric Materials

  • Chapter
Nanoscale Characterisation of Ferroelectric Materials

Part of the book series: NanoScience and Technology ((NANO))

  • 594 Accesses

Abstract

Scanning probe microscopy has experienced explosive growth in the last twenty years, beginning with the invention of the scanning tunneling microscope (STM) [1]. The operating principle of the STM involves electron tunneling, but the mechanism by which images are formed is through raster scanning, controlled by a ferroelectric (and piezoelectric) crystal. Soon after the development of the atomic force microscope, (AFM) [2], it was realized that ferroelectrics themselves could benefit from the use of scanning probes. Saurenbach and Terris [3] reported the first observations of domain structures in ferroelectrics using AFM. Since then there have been hundreds of subsequent reports. Large contrast and distinct phase difference make the piezoelectric mode of scanning force microscopy [4] a convenient technique to distinguish areas with different signs of ferroelectric polarization, provided that the piezoelectric response is large. Scanning measurements of linear [5]and nonlinear capacitance [6]can reveal the spatial distribution of dielectric properties, as can scanning microwave microscopy [7]. A review of AFM-based scanning probe techniques is found in Chap. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binning G, Rohrer H, Gerber C et al (1982) Surface Studies by Scanning Tunneling Microscopy. Phys Rev Lett 49: 57

    ADS  Google Scholar 

  2. Binning G, Quate CF, and Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56: 930

    ADS  Google Scholar 

  3. Saurenbach F and Terris BD (1990) Imaging of ferroelectric domain walls by force microscopy. Appl Phys Lett 56: 1703

    ADS  Google Scholar 

  4. Gruverman A, Auciello O, and Tokumoto H (1996) Scanning force microscopy for the study of domain structure in ferroelectric thin films J Vac Sci Technol B 14: 602

    Google Scholar 

  5. Matey JR and Blanc J (1985) Scanning capacitance microscopy. J Appl Phys 57: 1437

    ADS  Google Scholar 

  6. Cho Y and Yamanouchi K (1999) Scanning nonlinear dielectric microscopy with nanometer resolution. Ferroelectrics 222: 189

    Google Scholar 

  7. Chen G, Duewer F, Lu Y et al (1998) Quantitative nonlinear dielectric microscopy of periodically polarized ferroelectric domains. Appl Phys Lett 73: 1146

    ADS  Google Scholar 

  8. Massanell J, Garcia N, and Zlatkin A (1996) Nanowriting on ferroelectric surfaces with a scanning near-field optical microscope. Opt Lett 21: 12

    ADS  Google Scholar 

  9. Michel K (1950) Die Grundlagen der Theorie des Mikroskops. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp. 313

    Google Scholar 

  10. Mansfield SM and Kino GS (1990) Solid immersion microscope. Appl Phys Lett, 57: 2615

    ADS  Google Scholar 

  11. Webb RH (1996) Confocal optical microscopy. Rep Progr Phys 59: 427

    ADS  Google Scholar 

  12. Fischer UC and Zingsheim HP (1981) J Vac Sci Technol 19: 881

    ADS  Google Scholar 

  13. Synge EH (1928) A suggested method for extending microscopic resolution into the ultramicroscopic region. Phil Mag, Ser 4, 6: 356

    Google Scholar 

  14. Pohl DW, Denk W, and Lanz M (1984) Optical stethoscopy: Image recording with resolution Al20. Appl Phys Lett 44: 651

    ADS  Google Scholar 

  15. Durig U, Pohl DW, and Rohner F (1986) Near-field optical-scanning microscopy. J Appl Phys 59: 3318

    ADS  Google Scholar 

  16. Zenhausern F, Martin Y, and Wickramasinghe HK (1995) Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution. Science 269: 1083

    ADS  Google Scholar 

  17. Sandoghdar V, Wegscheider S, Krausch G et al (1997) Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really? J Appl Phys 81: 2499

    ADS  Google Scholar 

  18. Hecht B, Bielefeldt H, Inoue Y et al (1997) Facts and artifacts in near-field optical microscopy. J Appl Phys 81: 2492

    ADS  Google Scholar 

  19. McDaniel EB and Hsu JWP (1996) Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals. J Appl Phys 80: 1085

    ADS  Google Scholar 

  20. Yang TJ, Mohideen U, and Gupta MC (1997) Near-field scanning optical microscopy of ferroelectric domain walls. Appl Phys Lett 71: 1960

    ADS  Google Scholar 

  21. Hubert C and Levy J (1998) Nanometer-scale imaging of domains in ferroelectric thin films using apertureless near-field scanning optical microscopy. Appl Phys Lett 73: 3229

    ADS  Google Scholar 

  22. Kerr J (1875) Phil Mag, Ser 4 50: 337

    Google Scholar 

  23. Rontgen WC (1883) Ann Phys Chem 18: 213

    Google Scholar 

  24. Kundt A (1883) Ann Phys Chem 18: 228

    Google Scholar 

  25. Pockels F (1894) Ãœber den Einfluss des Elektrostatischen Feldes auf des optische Verhalten piezoelectrischer Krystalle. Abhandlungen der Gesellschaft der Wissenschaften in Gottingen, Mathematisch-Physikalische Klasse, vol. 39

    Google Scholar 

  26. Nye JF (1957) Physical properties of crystals: Their representation by tensors and matrices Clarendon, Oxford

    MATH  Google Scholar 

  27. Mueller H (1935) Properties of Rochelle salt. Phys Rev 47: 175

    ADS  Google Scholar 

  28. Kobayashi J, Saito K, Takahashi N et al (1994) Optical activity and birefringence of the incommensurate phase of Rb2ZnC14. Phys Rev B 50: 2766–2774

    ADS  Google Scholar 

  29. Fousek J and Konak C (1972) Electrooptical properties of ferroelectric Gd2(M0O4)3. Czech J Phys B 22: 995

    ADS  Google Scholar 

  30. Dvorak V (1974) Improper ferroelectrics. Ferroelectrics 7: 1

    Google Scholar 

  31. Zwicker B and Scherrer P (1944) Helv Phys Acta 17: 346

    Google Scholar 

  32. Blinc R and Zeks B (1974) Soft modes in ferroelectrics and antiferroelectrics. North-Holland, Amsterdam

    Google Scholar 

  33. Ginzburg VL (1949) Zh Eksp Teor Phys 19: 36

    Google Scholar 

  34. Cochran W (1959) Crystal stability and the theory of ferroelectricity. Phys Rev Lett 3: 412

    ADS  Google Scholar 

  35. Cochran W (1960) Adv Phys 9: 387

    ADS  Google Scholar 

  36. Scott JF (1974) Soft-mode spectroscopy: Experimental studies of structural phase transitions. Rev Mod Phys 46: 83

    ADS  Google Scholar 

  37. Di Domenico M, Porto SPS, and Wemple SH (1967) Evidence from Raman scattering for an overdamped soft optic mode in BaTiO3. Phys Rev Lett 19: 855

    ADS  Google Scholar 

  38. Fleury PA and Worlock JM (1967) Electric-field-induced Raman effect in paraelectric crystals. Phys Rev Lett 18: 665

    ADS  Google Scholar 

  39. Perry CH and Hall DB (1965) Temperature dependence of the Raman spectrum of BaTiO3. Phys Rev Lett 15: 700

    ADS  Google Scholar 

  40. Pinczuk A, Taylor W, Burstein E et al. (1967) The Raman spectrum of BaTiO3. Solid State Commun 5: 429

    ADS  Google Scholar 

  41. Sirenko AA, Bernhard C, Golnik A et al (2000) Soft-mode hardening in SrTiO3 thin films Nature 404: 373

    Google Scholar 

  42. Last JT (1957) Infrared-absorption studies on barium titanate and related materials. Phys Rev 105: 1740

    ADS  Google Scholar 

  43. Barker AS and Tinkham M (1962) Far-infrared ferroelectric vibration mode in SrTiO3. Phys Rev 125: 1527

    ADS  Google Scholar 

  44. Spitzer VS, Miller RC, Kleinman DZ et al (1962) Far infrared dielectric dispersion in BaTiO3, SrTiO3, and Ti02. Phys Rev 126: 1710

    ADS  Google Scholar 

  45. Ikegami S, Ueda J, and Kisaka S (1962) J Phys Soc Japan 17: 1210

    ADS  Google Scholar 

  46. Steigmeier EF and Auderse H (1973) Dynamic critical behaviour at the structural phase transition in SrTiO3. Solid State Commun 12: 565

    ADS  Google Scholar 

  47. Dolino G (1973) Direct observation of ferroelectric domains in TGS with second-harmonic light. Appl Phys Lett 22: 123

    ADS  Google Scholar 

  48. Uesu Y, Kurimura S, and Yamamoto Y (1995) Optical second-harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3. Appl Phys Lett 66: 2165

    ADS  Google Scholar 

  49. Cudney RS, Garces-Chavez V, and Negrete-Regagnon P (1997) Analysis of ferroelectric 180° domain structures in BaTiO3 by use of second-harmonic scattering. Opt Lett 22: 439

    ADS  Google Scholar 

  50. Smolyaninov II and al. (1997) Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials. Optics Lett 22: 1592

    ADS  Google Scholar 

  51. Forsbergh PW (1949) Domain Structures and Phase Transitions in Barium Titanate. Phys Rev 76: 1187

    ADS  Google Scholar 

  52. Fousek J and Safrankova M (1965) On the equilibrium domain structure of BaTiO3. Jap J Appl Phys 4: 403

    ADS  Google Scholar 

  53. Bornarel J and Cach R (1999) Phase front and domains during the paraelectricferroelectric transition in KD2PO4: Optical observation and dielectric contributions. Phys Rev B 60: 3806

    ADS  Google Scholar 

  54. Gordon A (1986) Interface motion in ferroelectrics. Physica BandC 138B+C: 239

    Google Scholar 

  55. Kay HF (1948) Preparation and properties of crystals of barium titanate, BaTiO3. Acta Cryst 1: 229

    Google Scholar 

  56. Blattner H, Kanzig W, Merz Wet al (1948) Helv Phys Acta 21: 207

    Google Scholar 

  57. Matthias BT and von Hippel A (1948) Domain structure and dielectric response of barium titanate single crystals. Phys Rev 73: 1378

    ADS  Google Scholar 

  58. Klassen-Neklyudova MV, Chernysheva MA, and Shternberg AA (1948) Real structure of Rochelle salt crystals. Doklady Akademii Nauk SSSR 63: 527

    Google Scholar 

  59. Furuichi I and Mitsui T (1950) Domain structure of Rochelle salt. Phys Rev 80: 95

    ADS  Google Scholar 

  60. Mitsui T and Furuichi J (1953) Domain structure of Rochelle salt and KH2PO4. Phys Rev 90: 193

    ADS  Google Scholar 

  61. Merz WJ (1952) Domain properties in BaTiO3. Phys Rev 88: 421

    ADS  Google Scholar 

  62. Miller RC and Savage A (1959) Direct observation of antiparallel domains during polarization reversal in single crystal barium titanate. Phys Rev Lett 2: 294

    ADS  Google Scholar 

  63. Kobayashi J, Yamada N, and Nakamura T (1963) Origin of the visibility of the antiparallel 180 degree domains in barium titanate. Phys Rev Lett 1: 410

    ADS  Google Scholar 

  64. Kobayashi J (1967) Optical observation of domain motion in ferroelectric BaTiO3. Phys Stat Sol 21: 151

    ADS  Google Scholar 

  65. Antipov VV, Blistanov AA, Sorokin NG et al (1985) Regular domain structure formation in ferroelectric LiNbO3 and LiTaO3. Kristallografiya 30: 734–738

    Google Scholar 

  66. Otko AI, Nosenko AE, Volk TR et al (1993) Spatial visualization of domains in lithium niobate crystals. Ferroelectrics 145: 163

    Google Scholar 

  67. Ross GW, Peter G. R. Smith, and Robert W. Eason (1997) Optical control of electric field poling in LiTaO3. Appl Phys Lett 71: 309

    ADS  Google Scholar 

  68. Otko AI, Nosenko, A.E., and Moiseenko, V.N. (1994) Nonlinear optical visualization of 180° - domains in lithium niobate. Crystallography Reports 39: 444

    ADS  Google Scholar 

  69. Kahmann F, Pankrath R, and Rupp RA (1994) Imaging ferroelectric 180° domain boundaries by diffraction efficiency topography. Phys. Status Solidi (a) 144: K99

    Google Scholar 

  70. MacCormack S and Feinberg J (1996) Revealing 180 domains in ferroelectric crystals by photorefractive beam coupling. Appl Optics 35: 5961

    ADS  Google Scholar 

  71. Velichkina TS, Golubeva ON, Shustin OA et al. (1969) Investigation of domain structure of KDP crystal by optical techniques. Zh Eksp Teor Phys 9: 5

    Google Scholar 

  72. Flippen RB (1975) Domain wall dynamics in feroelectric/ferroelastic molybdates. J Appl Phys 46: 1068

    ADS  Google Scholar 

  73. Tikhomirov O and Red’kin B (1999) Optical observation of the antiparallel domain structures. Ferroelectrics 222: 339

    Google Scholar 

  74. Hill RM and Ichiki SK (1964) Optical behavior of domains in KH2PO4. Phys Rev 135: A1640

    ADS  Google Scholar 

  75. Shepherd 1W and Barkley JR (1972) Investigation of domain wall structure in Gd(MoO4)3 by Raman scattering. Solid State Commun 10: 123

    ADS  Google Scholar 

  76. Bastie P, Bornarel J, and Legrand JF (1976) Perturbated regions in the vicinity of domain wall in ferroelectric-ferroelastic crystals. Ferroelectrics 13: 455

    Google Scholar 

  77. Shur VY, Popov YA, and Soldatov GB (1983) Topography of the internal field in lead germanate single crystals having an initial domain structure. Soy Phys Solid State 25: 148

    Google Scholar 

  78. Watanabe Y, Tanaka K, and Sawada A (1997) Optical study of strain distribution in the vicinity of ferroelastic domain walls in Pb3(PO4)2 crystals. Ferroelectrics 191: 205

    Google Scholar 

  79. Abe R (1958) Optical study of the resultant movement of many walls in Rochelle salt. J Phys Soc Jpn 13: 244

    ADS  Google Scholar 

  80. Sinyakov EV and Dudnik EF (1969) Switching processes in BaTiO3 single crystals in sinusoidal field. Soy Phys - Cryst 13: 609

    Google Scholar 

  81. Miller RC and Savage A (1958) Velocity of sidewise 180° domain wall motion in BaTiO3 as a function of the applied electric field. Phys Rev 112: 755

    ADS  Google Scholar 

  82. Miller RC and Weinreich G (1960) Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys Rev 117: 1460

    ADS  Google Scholar 

  83. Fatuzzo E (1962) Theoretical considerations on the switching transient in ferroelectrics. Phys Rev 127: 1999

    Google Scholar 

  84. Stadler HL (1966) Forward velocity of 180° domain walls in BaTiO3. J Appl Phys 37: 1947

    ADS  Google Scholar 

  85. Fousek J and Brezina B (1960) The movement of single 90 degree domain walls of BaTiO3 in an alternating electric field. Czech J Phys B 10: 611

    Google Scholar 

  86. Fousek J and Brezina B (1961) The motion of 90 degree wedge domains in BaTiO3 in an alternating electric field. Czech J Phys B 11: 344

    ADS  Google Scholar 

  87. Shur VY, Letuchev VV, Rumyantsev EL et al (1985) Triangular domains in lead germanate. Sov Phys Solid State 27: 959

    Google Scholar 

  88. A.Gruverman, PhD thesis, Ural state University, Sverdlovsk, 1990

    Google Scholar 

  89. Little EA (1955) Dynamic behavior of domain walls in barium titanate. Phys Rev 98: 978

    ADS  Google Scholar 

  90. Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95: 690

    ADS  Google Scholar 

  91. Stadler HL and Zachmanidis PJ (1964) Random nucleation of new domains in BaTiO3 crystals at 20 kV/cm. J Appl Phys 35: 2625

    ADS  Google Scholar 

  92. Hayashi M (1972) Kinetics of domain wall motion in ferroelectric switching. I. General formulation. J Phys Soc Japan 33: 616

    ADS  Google Scholar 

  93. Petermann LA and Schmid H (1976) Proprietes d’un point-memoire en boracite Fe3B7O13I ferro-electrique-ferro-elastique orthorhombique. Revue de Physique Appliquee 11: 449

    Google Scholar 

  94. Bornarel J and Legrand J-F (1981) Motion of planar domain walls in the ferroelectric and ferroelastic tanane. Ferroelectrics 39: 1127

    Google Scholar 

  95. Shur VY, Letuchev VV, and Rumyantsev EL (1984) Field dependence of the polarization switching parameters and shape of domains in lead germinate. Sov Phys Solid State 26: 1521

    Google Scholar 

  96. Tikhomirov 0 (1996) Anomalies of ferroelectric domain wall motion near the transition point. J Appl Phys 80: 2358

    ADS  Google Scholar 

  97. Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59: 427

    ADS  Google Scholar 

  98. Hubert C, Levy J, Carter AC et al (1997) Confocal scanning optical microscopy of BaXSri_XTiO3 thin films Appl Phys Lett 71: 3353

    Google Scholar 

  99. Tikhomirov O and Levy J (2000) Direct observation of local ferroelectric phase transitions in Ba„Sr1_ XTiO3 thin films. Appl Phys Lett 77: 2048

    ADS  Google Scholar 

  100. Hubert C and Levy J (1999) New optical probe of GHz polarization dynamics in ferro-electric thin films. Rev Sci Instrum 70: 3684

    ADS  Google Scholar 

  101. Hubert C, Levy J, Cukauskas E et al (2000) Mesoscopic Microwave Dispersion in Ferroelectric Thin Films. Phys Rev Lett 85: 1998

    ADS  Google Scholar 

  102. Tikhomirov O, Redlcin B, Trivelli A et al (2000) Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy. J Appl Phys 87: 1932

    ADS  Google Scholar 

  103. Hubert C, Levy J, Rivkin TV et al (2001) Nanopolar reorientation in ferroelectric thin films. Appl Phys Lett 79: 2058

    ADS  Google Scholar 

  104. Tikhomirov O, Jiang H, and Levy J (2002) Local ferroelectricity in SrTiO3 thin films. Phys Rev Lett 89: 147601

    Google Scholar 

  105. Park KC and Cho JH (2000) Electric field dependence of ferroelectric phase transition in epitaxial SrTiO3 films on SrRuO3 and La0.5Sr05CoO3. Appl Phys Lett 77: 435

    ADS  Google Scholar 

  106. Lippmaa M, Nakagawa N, Kawasaki M et al (1999) Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104. Appl Phys Lett 74: 3543

    ADS  Google Scholar 

  107. Chen A, Cross LE, Zhi Y et al (2001) Dielectric loss and defect mode of SrTiO3 thin films under direct-current bias. Appl Phys Lett 78: 2754

    ADS  Google Scholar 

  108. Bozhevolnyi SI, Hvam JM, Pedersen K et al (1998) Second-harmonic imaging of ferroelectric domain walls. Appl Phys Lett 73: 1814

    ADS  Google Scholar 

  109. Zenhausern F, OBoyle MP, and Wickramasinghe HK (1994) Apertureless near-field optical microscope. Appl Phys Lett 65: 1623

    ADS  Google Scholar 

  110. Levy J, Hubert C, and Trivelli A (2000) Ferroelectric polarization imaging using apertureless near-field scanning optical microscopy. J Chem Phys 112: 7848

    ADS  Google Scholar 

  111. Hillenbrand R and Keilmann F (2000) Complex optical constants on a subwavelength scale. Phys Rev Lett 85: 3029

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levy, J., Tikhomirov, O. (2004). Nanoscale Optical Probes of Ferroelectric Materials. In: Alexe, M., Gruverman, A. (eds) Nanoscale Characterisation of Ferroelectric Materials. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08901-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08901-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05844-8

  • Online ISBN: 978-3-662-08901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics