• Eckart Matthes
  • Peter Langen
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 1)


Ein Antimetabolit ist eine Verbindung, die aufgrund ihrer Strukturähnlichkeit zu einem Enzymsubstrat dessen Bindungsort am Enzym besetzt. Dadurch wird die enzymatische Umsetzung entweder gehemmt oder läuft fehl, indem nicht das Substrat umgesetzt wird, sondern der Antimetabolit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker R B (1967) Design of active site directed irreversible enzyme inhibitors. The organic chemistry of the enzymic active site. Wiley, New YorkGoogle Scholar
  2. Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D, De Clercq E (1993) Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: Potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother 37:332–338PubMedCrossRefGoogle Scholar
  3. Boucher Ch, Larder B (1995) HIV variation: consequences for antiviral therapy and disease progression. Rev Med Virol 5:7–21CrossRefGoogle Scholar
  4. Brachwitz H, Vollgraf C (1995) Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther 60:39–82CrossRefGoogle Scholar
  5. Chu C K, Baker D C (eds) (1993) Nucleosides and nucleotides as antitumor and antiviral agents. Plenum Press, New YorkGoogle Scholar
  6. Chu C K, Ma T, Shanmuganathan K, Wang C, Xiang Y, Pai S B, Yao G Q, Sommadossi J-P, Cheng Y-C (1995) Use of 2′-fluoro-5-methyl-β-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus. Antimicrob Agents Chemother 39:979–981PubMedCrossRefGoogle Scholar
  7. Culver K W, Ram Z, Wallbridge S, Ishii H, Oldfield E H, Blaese R M (1992) In vivo gene tranfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552PubMedCrossRefGoogle Scholar
  8. Daluge S M, Purifoy D J M, Savina P M, St. Clair M H, Parry N R, Dev I K, Novak P, Ayers K M, Reardon J E, Roberts G B, Fyfe J A, Blum M R, Averett D R, Dornsife R E, Domin B A, Ferone R, Lewis D A, Krenitzky T A (1994) 5-Chloro-2′,3′-dideoxy-3′-fluorouridine (935U83), a selective anti-human immunodeficiency virus agent with improved metabolic and toxicological profile. Antimicrob Agents Chemother 38:1590–1603PubMedCrossRefGoogle Scholar
  9. De Clercq E (1993a) Antivirals for the treatment of herpesvirus infections. J Antimicrob Chemother [Suppl. A] 32:121–132CrossRefGoogle Scholar
  10. De Clercq E (1993b) Therapeutic potential of HPM PC as an antiviral drug. Rev Med Virol 3:85–96CrossRefGoogle Scholar
  11. De Clercq E (1995) Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J Med Chem 14:2492–2517Google Scholar
  12. De Clercq E, Descamps J, De Sommer P, Barr P J, Jones A S, Walker R T (1979) (E)-5-(Bromovinyl-2′-deoxyuridine: a potent and selective anti-herpes agent. Proc Natl Acad Sci USA 76:2947–2951PubMedCrossRefGoogle Scholar
  13. De Clercq E, Holy A, Rosenberg I, Sakuma T, Balzarini J, Maudgal P C (1986) A novel selective broad-spectrum anti-DNA virus agent. Nature 323:464–467PubMedCrossRefGoogle Scholar
  14. DeVita Jr V T, Hellman S, Rosenberg S A (1993) Cancer, principles and practise of oncology. Lippincott, PhiladelphiaGoogle Scholar
  15. Dienstag J L, Perrillo R P, Schiff E R, Bartholomew M, Vicary C, Rubin M (1995) A preliminary trial of lamivudine for chronic hepatitis B infection. N Engl J Med 333:1657–1661PubMedCrossRefGoogle Scholar
  16. Elion G B, Furman P A, Fyfe J A, Miranda P de, Beauchamp L, Schaeffer H J (1977) Selectivity of action of an anti-herpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci USA 74:5716–5720PubMedCrossRefGoogle Scholar
  17. Faraj A, Agrofoglio L A, Wakefield J K, McPherson S, Morrow C D, Gosselin G, Mathe C, Imbach J-L, Schinazi R F, Sommadossi J-P (1994) Inhibition of human immunodeficiency virus type 1 reverse transriptase by the 5′-tri-phosphate ß enantiomers of cytidine analogues. Antimicrob Agents Chemother 38:2300–2305PubMedCrossRefGoogle Scholar
  18. Field A K, Biron K K (1994) The end of “innocence” revisited: resistance of herpesviruses to antiviral drugs. Clin Microbiol Rev 7:1–13PubMedGoogle Scholar
  19. Fourel I, Li J, Hantz O, Jacquet C, Fox J J, Trepo C (1992) Effects of 2′-fluorinated arabinosyl-pyrimidine nucleosides on duck hepatitis B virus DNA level in serum and liver of chronically infected ducks. J Med Virol 37:122–126PubMedCrossRefGoogle Scholar
  20. Fox J J, Watanabe K A, Chou T C, Schinazi R F, Soike K F, Fourel I, Hantz G, Trepo C (1988) Antiviral activities of 2′-fluorinated arabinosyl-pyrimidine nucleosides. In: Taylor N F (ed) American chemical society symposium series, 374: fluorinated carbohydrates, chemical and biochemical aspects. American chemical society, Washington, pp 176–190CrossRefGoogle Scholar
  21. Furman P A, Wilson J E, Reardon J E, Painter G R (1995) The effect of absolute configuration on the anti-HIV and anti-HBV activity of nucleoside analogues. Antiviral Chem Chemother 6:345–355Google Scholar
  22. Gibbs J B, Oliff A, Kohl N E (1994) Farnesyltransferase inhibitors: RAS research yields a potential cancer therapeutic. Cell 77:174–178CrossRefGoogle Scholar
  23. Golovinsky E (1984) Biochemie der Antimetaboliten. Fischer, JenaGoogle Scholar
  24. Goody R S (1995) Rational drug design and HIV: hopes and limitations. Nat Med 1:519–520PubMedCrossRefGoogle Scholar
  25. Hafkemeyer P, Keppler-Hafkemeyer A, Al Haya M A, Janta-Lipinski M von, Matthes E, Lehmann Ch, Offensperger W B, Offensperger S, Gerok W, Blum H (1996) Inhibition of duck hepatitis B replication by 2′,3′-dideoxy-3′-fluoroguanosine in vitro and in vivo. Antimicrob Agents Chemother 40:792–794PubMedGoogle Scholar
  26. Hall E T, Yan J-P, Melancon P, Kuchta R D (1994) 3′-Azidodeoxythymidine potently inhibits protein glycosylation. J Biol Chem 269:14355–14358PubMedGoogle Scholar
  27. Hart G J, Orr D C, Penn C R, Figueiredo H T, Gray N M, Boehme R E, Cameron J M (1992) Effects of (−)-2′deoxy-3′-thiacytidine (3TC) 5′-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta, and gamma. Antimicrob Agents Chemother 37:1390–1392Google Scholar
  28. Hausmann R (1995) Und wollten versuchen, das Leben zu verstehen. Betrachtungen zur Geschichte der Molekularbiologie. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  29. Hitchcock M J M (1991) 2′,3′-Didehydro-2′,3′-dideoxythymidine (D4T), an anti-HIV agent. Antiviral Chem Chemother 2:125–132Google Scholar
  30. Huber B E, Austin E A, Good S S, Knick V C, Tibbels S, Richards C A (1993) In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 53:4619–4626PubMedGoogle Scholar
  31. Hunter W N (1995) Rational drug design: a multidisciplinary approach. Mol Med Today 1:31–34PubMedCrossRefGoogle Scholar
  32. Ilsley D D, Lee S H, Miller W H, Kuchta R D (1995) Acyclic guanosine analogs inhibit DNA polymerases alpha, delta and epsilon. Biochemistry 34:2504–2510PubMedCrossRefGoogle Scholar
  33. Jacobson M A (1993) Valacyclovir (BW256U87): the L-valyl ester of acyclovir. J Med Virol [Suppl] 1:150–153CrossRefGoogle Scholar
  34. Johnston M I, Hoth D F (1993) Present status and future prospects fot HIV therapies. Science 260:1286–1293PubMedCrossRefGoogle Scholar
  35. Kellam P, Boucher C A, Larder B A (1992) Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high level resistance to zidovudine. Proc Natl Acad Sci USA 89:1934–1938PubMedCrossRefGoogle Scholar
  36. Kim S, Scheerer S, Geyer M A, Howell S B (1990) Direct cerebrospinal fluid delivery of an antiretroviral agent using multivesicular liposomes. J Infect Dis 162:750–752PubMedCrossRefGoogle Scholar
  37. Kim H O, Schinazi R F, Shanmuganathan K, Leong L S, Beach J W, Nampalli S, Cannon D L, Chu C K (1993) L-β-2S,4S)-and L-α-(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships. J Med Chem 36:519–528PubMedCrossRefGoogle Scholar
  38. Kohlstaedt L, Wang A J, Friedman J M, Rice P A, Scitz T A (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790PubMedCrossRefGoogle Scholar
  39. Kong X-B, Zhu G-Y, Vidal P M, Watanabe K A, Polsky B, Armstrong D, Ostrander M, Lang St A, Muchmore E, Chou T-C (1992) Comparison of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36:808–818PubMedCrossRefGoogle Scholar
  40. Langen P (1975) Antimetabolites of nucleic acid metabolism. Gordon, Breach, London Paris New YorkGoogle Scholar
  41. Larder B A, Kemp S D (1989) Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AzT). Science 246:1155–1158PubMedCrossRefGoogle Scholar
  42. Larder B E, Kemp S D, Harrigan P R (1995) Potential mechanism for sustained antiretroviral efficacy of AzT-3TC combination therapy. Science 269:696–699PubMedCrossRefGoogle Scholar
  43. Lasic D D, Papahadjopulos D (1995) Liposomes revisited. Science 267:1276–1276CrossRefGoogle Scholar
  44. Levitski A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1789CrossRefGoogle Scholar
  45. Lewis W, Dalakis M C (1995) Mitochondrial toxicity of antiviral drugs. Nature Med 1:417–422PubMedCrossRefGoogle Scholar
  46. Mankertz J, Baeyer H von, Rokos K, Nündel M, Pauli G, Riedel E (1995) Cell specific uptake of antiretroviral drugs: AzT coupled to LDL inhibits HIV replication in human macrophages. Int J Clin Pharmacol Ther 33:85–88PubMedGoogle Scholar
  47. Matthes E, Lehmann Ch, Scholz D, Janta-Lipinski M von, Gaertner K, Rosenthal H A, Langen P (1987) Inhibition of HIV-associated reverse transcriptase by sugar-modified derivatives of thymidine 5′-triphosphate in comparison to cellular DNA polymerases α and β. Biochem Biophys Res Commun 148:78–85PubMedCrossRefGoogle Scholar
  48. Matthes E, Scholz D, Sydow G, Janta-Lipinski M von, Rosenthai H A, Langen P (1990) 3′-Fluoro-substituted deoxynucleosides as potential anti-AIDS drugs. Z Klin Med 45:1255Google Scholar
  49. Matthes E, Reimer K, Janta-Lipinski M von, Meisel H, Lehmann C (1991) Comparative inhibition of hepatitis B virus DNA polymerase and cellular DNA polymerases by triphosphates of sugar-modified 5-methyldeoxycytidine and other nucleoside analogs. Antimicrob Agents Chemother 35:1254–1257PubMedCrossRefGoogle Scholar
  50. McKenzie R, Fried M W, Sallie R, Conjeevaran H, Di Bisceglie A M, Park Y, Savarese B, Kleiner D, Tsokos M, Luciano C et al. (1995) Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 333:1099–1105PubMedCrossRefGoogle Scholar
  51. Mellors J W (1996) Closing in on human immunodeficiency virus-1. Nature Med 2:274–275PubMedCrossRefGoogle Scholar
  52. Mitsuya H, Weinhold K J, Furman P A, StClair M H, Nusinoff Lehrman S, Gallo R C, Bolognesi D, Barry D W, Broder S (1985) 3′-azido-3′-deoxythymidine (BWA509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100PubMedCrossRefGoogle Scholar
  53. Moolten F L (1994) Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther 1:279–287PubMedGoogle Scholar
  54. Mullen C A (1994) Metabolic suicide genes in gene therapy. Pharmacol Ther 63:199–207PubMedCrossRefGoogle Scholar
  55. Nair V, Jahnke T S (1995) Antiviral activities of isomeric di-deoxynucleosides of D-and L-related stereochemistry. Antimicrob Agents Chemother 39:1017–1029PubMedCrossRefGoogle Scholar
  56. Norley S G, Huang L, Rouse B T (1986) Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replication in vitro. J Immunol 136:681–685PubMedGoogle Scholar
  57. O’Brien J J, Campoli-Richards D M (1989) Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 37:233–309PubMedCrossRefGoogle Scholar
  58. Öberg B (1989) Antiviral effects of phosphonoformate (PF A, foscarnet sodium). Pharmacol Ther 40:213–285PubMedCrossRefGoogle Scholar
  59. Paff M T, Averett R D, Prus K L, Miller W H, Nelson D J (1994) Intracellular metabolism of (−) and (+)-cis-5-fluo-ro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5yl] cytosine in HepG 2 derivative 2.2.15 (subclone P5A) cells. Antimicrob Agents Chemother 38:1230–1238PubMedCrossRefGoogle Scholar
  60. Pillay D, Getman M B D, Richman D D (1995) HIV-protease inhibitors: their development, mechanism of action and clinical potential. Rev Med Virol 5:23–33CrossRefGoogle Scholar
  61. Ponzetto A, Fiume L, Forzani B, Song S Y, Busi C, Mattioli A, Spinelli C, Marinelli M, Smedile A, Chiaberge E, Bonino F, Gervasi G B, Rapicetta M, Verme G (1991) Adenine arabinoside monophosphate and acyclovir monophosphate coupled to lactosaminated albumin reduce wood-chuck hepatitis virus viremia at doses lower than do the unconjugated drugs. Hepatology 14:16–24PubMedCrossRefGoogle Scholar
  62. Quastel J H, Woolbridge W R (1928) LXXXIV. Some properties of the dehydrogenating enzymes of bacteria. Bio-chem J 22:689Google Scholar
  63. Reefschläger J, Bärwolff D, Engelmann P, Langen P, Rosenthai H (1982) Efficiency and selectivity of (E)-5-(2-bro-movinyl)-2′-deoxyuridine and some other 5-substituted 2′-deoxyprimidine nucleosides as antiherpes agents. Antiviral Res 2:41–52PubMedCrossRefGoogle Scholar
  64. Renneisen K, Leserman L, Matthes E, Schröder H C, Müller W E G (1990) Inhibition of expression of HIV-1 in vitro by antibody-targeted liposomes containing antisense RNA to the env region. J Biol Chem 265:16337–16343PubMedGoogle Scholar
  65. Rensen P C N, Dijk M C M van, Havenaar E C, Bijsterbosch M K, Kruijt J K, Berkel T J C van (1995) Selective liver targeting of antivirals by recombinant chylomicrons-a new therapeutic approach to hepatitis B. Nature Med 1:221–225PubMedCrossRefGoogle Scholar
  66. Schinazi R F, Mead J R, Feorino P M (1992) Insights into HIV chemotherapy. AIDS Res Hum Retroviruses 8:963–990PubMedCrossRefGoogle Scholar
  67. Schinazi R F, Gosselin G, Faraj A, Korba B E, Liotta D C, Chu C K, Mathe Ch, Imbach J-L, Sommadossi J-P (1994) Pure nucleoside enantiomers of β-2′,3′-dideoxycytidine analogs are selective inhibitors of hepatitis B virus in vitro. Antimicrob Agent Chemother 38:2172–2174CrossRefGoogle Scholar
  68. Shaw T, Amor P, Civitico G, Boyd M, Locarnini S (1994) In vitro antiviral activity of penciclovir, a novel purine nucleoside, against duck hepatitis B virus. Antimicrob Agents Chemother 38:719–723PubMedCrossRefGoogle Scholar
  69. Smee D F, Martin J C, Verheyden J P H, Matthews T R (1983) Antiherpes activity of the acyclic nucleoside 9-(l,3-dihy-droxy-2-propoxymethyl)guanine. Antimicrob Agents Chemother 23:676–682PubMedCrossRefGoogle Scholar
  70. Smith R A, Knight V, Smith J A D (eds) (1984) Clinical applications of ribavirin. Academic Press, London New YorkGoogle Scholar
  71. Sorscher E J, Peng S, Bebok Z, Allan P W, Bennett L L J, Parker W B (1994) Tumor cell bystander killing in colonic carcinoma utilizing the E. coli deo D gene to generate toxic purines. Gene Ther 1:233–238PubMedGoogle Scholar
  72. Sundseth R, Joyner S S, Moore J T, Dornsife R E, Dev I K (1996) The anti-human immunodeficiency virus agent 3′-fluorothymidine induces DNA damage and apoptosis in human lymphoblastoid cells. Antimicrob Agents Chemother 40:331–335PubMedGoogle Scholar
  73. Suzuki S, Lee B, Luo W, Tovell D, Robins M J, Tyrrell D L J (1988) Inhibiton of duck hepatitis B virus replication by purine 2′,3′-dideoxynucleosides. Biochem Biophys Res Commun 156:1144–1151PubMedCrossRefGoogle Scholar
  74. Szoka F C, Chu C J (1988) Increased efficacy of phosphonoformate and phosphonoacetate inhibition of herpes simplex virus tpye 2 replication by encapsulation in liposomes. Antimicrob Agents Chemother 32:858–864PubMedCrossRefGoogle Scholar
  75. Tisdale M, Kemp S D, Parry N R, Larder B A (1993) Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3′-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci USA 90:5653–5656PubMedCrossRefGoogle Scholar
  76. Törnevik Y, Ullman B, Balzarinc J, Wahren B, Erikson S (1995) Cytotoxity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AzTMP) levels, whereas antihuman immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-tri-phosphate (AzTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 49:829–837PubMedCrossRefGoogle Scholar
  77. Tsai C-C, Follis K E, Sabo A, Beck T W, Grant R F, Bischofberger N, Benveniste R E, Black R (1995) Prevention of SIV infection in macaques by (R)-9-(2-phosphonylmethoxypropyl)adenine. Science 270:1197–1199PubMedCrossRefGoogle Scholar
  78. Verlinde C L M J, Hoi W G J (1994) Structure-based drug design: progress, results and challenges. Structure 7:577–587CrossRefGoogle Scholar
  79. Whitley R, Field H J (eds) (1993) Famciclovir/penciclovir workshop. Antiviral Chem Chemother [Suppl] 1:1–68Google Scholar
  80. Whitton J L (1994) Antisense treatment of viral infection. Adv Virus Res 44:267–303PubMedCrossRefGoogle Scholar
  81. Woods D D (1940) The relation of p-aminobenzoic acid to the mechanism of the action of Sulfonamide. Br J Exp Pathol 21:74Google Scholar
  82. Zeller W J, Hausen H zur (Hrsg) (1995) Onkologie: Grundlagen, Diagnostik, Therapie, Entwicklungen. Ecomed, Landsberg/LechGoogle Scholar
  83. Zhang R W, Yan J W, Shahinian H, Amin G, Lu Z H, Liu T P, Saag M S, Jiang Z W, Temsamani J, Martin R R, Schechter P J, Agrawal S, Diasio R B (1995) Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM91) in HIV-infected subjects. Clin Pharmacol Ther 58:44–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Eckart Matthes
  • Peter Langen

There are no affiliations available

Personalised recommendations