Advertisement

Enzym- und Proteinanalytik

  • Peter Westermann
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 1)

Zusammenfassung

Proteine sind für eine Vielfalt dynamischer Lebensfunktionen wie Bewegung, Kraftentwicklung, Stoffwechselkontrolle sowie Differenzierung und Entwicklung verantwortlich. Andere Proteine bilden intrazellulare Strukturen und bestimmen Form und Funktion von Organismen. Schließlich gibt es Proteine mit enzymatischen Eigenschaften, die die Knüpfung oder Auflösung von kovalenten Bindungen katalysieren. Zur Realisierung dieser vielfältigen Funktionen enthält das menschliche Genom, das etwa 109 Basenpaare umfaßt, ca. 100000 Proteingene. Wenn auch die Sequenzierung des gesamten Genoms im Rahmen des Humanen Genomprojekts in erreichbare Nähe gerückt ist und damit die Sequenzen für die verschiedenen menschlichen Gene in einigen Jahren bekannt sein werden, umfaßt der gegenwärtige Kenntnisstand erst 72000 Proteingene bezogen auf alle Tier-, Pflanzen- und Bakterienspezies. Damit wäre aber nur die erste Informationsebene, die der Sequenz der 20 natürlichen Aminosäuren, erschlossen. Da jede Polypeptidkette sich entsprechend ihrer Aminosäuresequenz unter Ausbildung nichtkovalenter Bindungen in eine typische Raumstruktur faltet, die für ihre Funktion essentiell ist, müssen in einem zweiten Schritt die Raumstrukturen aufgeklärt werden, um die Funktionen der Proteine und ihre Interaktionen verstehen zu können. Bisher sind 5400 Raumstrukturen ermittelt worden, die mehreren 100 verschiedenen Proteinfamilien zuzuordnen sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adelman B, Carlson P, Handin R I (1992) Evaluation of platelet surface antigens by fluorescence flow cytometry. Methods Enzymol 215:420–427PubMedCrossRefGoogle Scholar
  2. Ahnert-Hilger G (1994) Permeabilization by a-toxin and Streptolysin O. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 77–82Google Scholar
  3. Allen J B, Walberg M W, Edwards M C, Elledge S J (1995) Finding prospective partners in the library: the two-hydrid system and phage display find a match. Trends Biochem Sci 20:511–516PubMedCrossRefGoogle Scholar
  4. Allewell N M, Oberoi H (1991) Electrostatic effects in protein folding, stability, and function. Methods Enzymol 202:3–19PubMedCrossRefGoogle Scholar
  5. Anderson S R (1991) Time-resolved fluorescence spectroscopy. Application to calmodulin. J Biol Chem 266:11405–11408PubMedGoogle Scholar
  6. Baldwin R L (1995) The nature of protein folding pathways. The classical versus the new view. J Biomol NMR 5:103–109PubMedCrossRefGoogle Scholar
  7. Baldwin S A (1994) Use of antipeptide antibodies for the isolation and study of membrane proteins. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol. 27. Biomembrane protocols II architecture and function. Humana Press, Totowa, New Jersey, pp 43–63Google Scholar
  8. Bartel P L, Fields S (1995) Analyzing protein-protein interactions using the two-hybrid system. Methods Enzymol 254:241–263PubMedCrossRefGoogle Scholar
  9. Bayer E A, Wilchek M (1992) Labeling and detection of proteins and glycoproteins. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 91–100Google Scholar
  10. Bergmeyer H-U (ed) (1983) Methods of enzymatic analysis. Verlag Chemie, WeinheimGoogle Scholar
  11. Berliner L J (1978) Spin labeling in enzymology: spin-labeled enzymes and proteins. Methods Enzymol 49:418–480PubMedCrossRefGoogle Scholar
  12. Bhown A S, Bennett J C (1988) Liquid phase sequence analysis of proteins/peptides. In: Bhown A S (ed) Protein/ peptide sequence analysis: current methodologies. CRC Press, Boca Raton, Fa, pp 49–71Google Scholar
  13. Biemann K (1992) Mass spectrometry of peptides and proteins. Annu Rev Biochem 61:977–1010PubMedCrossRefGoogle Scholar
  14. Biemann K, Johnson R S, Hill J A, Martin S A (1989) Advances in peptide and protein sequencing by high performance tandem mass spectrometry. In: Wittman-Liebold B (ed) Methods in protein sequence analysis. Springer, Berlin Heidelberg New York, pp 175–182CrossRefGoogle Scholar
  15. Blackwood E M, Eisenman R N (1995) Identification of protein-protein interactions by γgt11 expression cloning. Methods Enzymol 254:229–240PubMedCrossRefGoogle Scholar
  16. Blaicher M, Kastner M (1993) Membrane protein purification. Basics and applications. Pharmacia Biotech GmbH, FreiburgGoogle Scholar
  17. Blundell J F, Johnson L N (1976) Protein crystallography. Academic Press, New York London, pp 151–164Google Scholar
  18. Bolton A E, Hunter W M (1973) The labeling of proteins to high specific radioactivities by conjugation to a 125J-containing acylating reagent. Biochem J 133:528–539Google Scholar
  19. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  20. Bossemeyer D (1995) Protein kinases — structure and function. FEBS Lett 369:57–61PubMedCrossRefGoogle Scholar
  21. Boyer P D (1970) Enzymes. 3rd edn. Academic Press, New York LondonGoogle Scholar
  22. Boyle W J, Geer P van der, Hunter T (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201:110–149PubMedCrossRefGoogle Scholar
  23. Bradd S J, Dunn M J (1993) Analysis of membrane proteins by Western blotting and enhanced chemiluminescence. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 211–218CrossRefGoogle Scholar
  24. Brimacombe R, Atmadja J, Kyriatsoulis A, Stiege W (1985) RNA structure and RNA-protein neighborhoods in the ribosome. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 184–202Google Scholar
  25. Bronstein I, Kricka L-J (1992) Chemiluminescence: properties of 1,2. dioxetane chemiluminescence. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 168–175Google Scholar
  26. Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514PubMedCrossRefGoogle Scholar
  27. Bu G, Schwartz A L (1994) Identification of cell surface binding proteins via covalent crosslinking. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, London New York, pp 199–204Google Scholar
  28. Bundle D R, Sigurskjold B W (1994) Determination of accurate thermodynamics of binding by microcalorimetry. Methods Enzymol 247:288–305PubMedCrossRefGoogle Scholar
  29. Cantor C R, Schimmel P R (1980) Biophysical chemistry. Part II: Techniques for the study of biological structure and function. W H Freeman & Co, New YorkGoogle Scholar
  30. Carey J (1991) Gel retardation. Methods Enzymol 208:103–117PubMedCrossRefGoogle Scholar
  31. Carlsson J, Janson J-C, Sparrman M (1989) Affinity chromatography. In: Janson J-C, Rydén L (ed) Protein purification. Principles, high resolution methods, and applications. VCH, Weinheim, pp 275–329Google Scholar
  32. Celis J E, Rasmussen H H, Olsen E, Madsen P, Leffers H, Honore B, Dejgaard K, Gromov P, Vorum H, Vasiliev A, Baskin Y, Liu X D, Celis A, Basse B, Lauridsen J B, Ratz G P, Andersen A H, Walbum E, Kjaergaard I, Andersen I, Puype M, Vadamme J, Vandekerckhove J (1994) The human keratinocyte two-dimensional protein database (update 1994) towards an integrated approach to the study of cell proliferation, differentiation and skin diseases. Electrophoresis 15:1349–1458Google Scholar
  33. Cerione R A, Ross E M (1991) Reconstitution of receptors and G proteins in phospholipid vesicles. Methods Enzymol 195:329–342PubMedCrossRefGoogle Scholar
  34. Chiari M, Casale E, Santaniello E, Righetti P G (1989) Synthesis of buffers for generating immobilized pH gradients: acidic/acrylamido buffers. Theor Appl Electr 1:99–107Google Scholar
  35. Chou P Y, Fasman G D (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148PubMedGoogle Scholar
  36. Church G M, Kieffer-Higgins S (1988) Multiplex DNA sequencing. Science 240:185–188PubMedCrossRefGoogle Scholar
  37. Clark M S F, McNeil P L (1994) Syringe loading: a method for inserting macromolecules into cell in suspension. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, London New York, pp 30–36Google Scholar
  38. Clarke S (1992) Protein isoprenylation and methylation at carboxy-terminal cysteine residues. Annu Rev Biochem 61:355–386PubMedCrossRefGoogle Scholar
  39. Claudio T (1992) Stable expression of heterologous multisubunit protein complexes established by calcium phosphate-or lipid-mediated cotransfection. Methods Enzymol 207:391–408PubMedCrossRefGoogle Scholar
  40. Cohen P, Gibson B W, Holmes C F B (1991) Analysis of the in vivo phosphorylation states of proteins by fast atom bombardment mass spectrometry and other techniques. Methods Enzymol 201:153–168PubMedCrossRefGoogle Scholar
  41. Comings D E, Miguel A G, Lesser H H (1979) Nuclear proteins. VI Fractionation of chromosomal non-histone proteins using hydrophobic chromatography. Biochim Biophys Acta 563:253–260PubMedCrossRefGoogle Scholar
  42. Coodley E L (1970) Diagnostic enzymes. Lea & Febiger, PhiladelphiaGoogle Scholar
  43. Corbett J, Dunn M J (1993) Two-dimensional polyacrylamide gel electrophoresis of membrane proteins. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 219–227CrossRefGoogle Scholar
  44. Corfield A P (1993) Analysis of sugar sequences in glycoproteins by glykosidase digestion and gel filtration. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 269–286CrossRefGoogle Scholar
  45. Crameri R, Suter M (1993) Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production. Gene 137:69–75PubMedCrossRefGoogle Scholar
  46. Crawford A W, Beckerle M C (1994) Blot overlay assay: A method to detect protein-protein interactions. In: Celis J E (ed) Cell biology. A laboratory handbook. Academic Press, New York London, pp 301–308Google Scholar
  47. Damaschun G, Müller J J, Bielka H (1979) Scattering studies of ribosomes and ribosomal components. Methods Enzymol 59:706–750PubMedCrossRefGoogle Scholar
  48. Davis L J (1995) The nuclear pore complex. Annu Rev Biochem 64:865–896PubMedCrossRefGoogle Scholar
  49. Dean PDG, Johnson W S, Middle F A (eds) (1985) Affinity chromatography. A practical approach. IRL Press, OxfordGoogle Scholar
  50. Dejgaard K, Celis J E (1994) Two-dimensional Northwestern blotting. In: Celis J E (ed) Cell biology. A laboratory handbook. Academic Press, New York London, pp 339–344Google Scholar
  51. Demchenko A P (1994) Protein fluorescence, dynamics and function: exploration of analogy between electronically excited and biocatalytic transition. Biochim Biophys Acta 1209:149–164PubMedCrossRefGoogle Scholar
  52. Deziel M R, Mau M M (1990) Biotin-conjugated reagents as site-specific probes of membrane protein structure: application to the study of the human erythrozyte hexose transporter. Anal Biochem 190:297–303PubMedCrossRefGoogle Scholar
  53. Dixon M, Webb E C (eds) (1979) Enzymes, 3rd edn. Longman, LondonGoogle Scholar
  54. Dodson M, Echols H (1991) Electron microscopy of protein-DNA complexes. Methods Enzymol 208:168–196PubMedCrossRefGoogle Scholar
  55. Doolittle R F (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64:287–314PubMedCrossRefGoogle Scholar
  56. Dotti C G, Parton R G, Simons K (1991) Polarized sorting of glypicated proteins in hippocampal neurons. Nature 349:158–161PubMedCrossRefGoogle Scholar
  57. Draper D F (1995) Protein-RNA recognition. Annu Rev Biochem 64:593–620PubMedCrossRefGoogle Scholar
  58. Dubochet J, Duconmun M, Zollinger M, Kellenberger E (1971) A new preparation method for dark-field electron microscopy of biomacromolecules. J Ultrastruct Res 55:147–157CrossRefGoogle Scholar
  59. Durchschlag H (1993) Small angle X-ray scattering of proteins. In: Baianu I C, Pessen H, Kumosinski T F (eds) Physical chemistry of food processes, vol 2. ITP Thompson, London, pp 18–117Google Scholar
  60. Dwek R A, Edge C J, Harvey D J, Wormald M R, Paregh R B (1993) Analysis of glycoprotein-associated Oligosaccharides. Annu Rev Biochem 62:65–100PubMedCrossRefGoogle Scholar
  61. Eason R (1984) Analytical ultracentrifugation. In: Rickwood D (ed) Centrifugation, a practical approach. ERL Press, Oxford, pp 251–286Google Scholar
  62. Edmann P, Begg G (1975) Sequence determination. In: Needleman S B (ed) Protein sequence determination. Springer, Berlin Heidelberg New York, pp 232–279CrossRefGoogle Scholar
  63. Eriksson K-O (1989) Hydrophobic interaction chromatography. In: Janson J-C, Ryden L (eds) Protein purification. Principles, high resolution methods, and applications. VCH, Weinheim, pp 207–226Google Scholar
  64. Feeney R E (1987) Chemical modification of proteins: comments and perspectives. Int J Pept Protein Res 29:145–161PubMedCrossRefGoogle Scholar
  65. Fersht A (1983) Enzyme structure and mechanism. Freeman, New YorkGoogle Scholar
  66. Fields S, Song O-K (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  67. Fimmel S, Choli T, Dencher N A, Buldt G, Wittmann-Liebold B (1989) Topography of surface-exposed amino acids in the membrane protein bacteriorhodopsin determined by proteolysis and microsequencing. Biochim Biophys Acta 978:231–240PubMedCrossRefGoogle Scholar
  68. Formosa T, Barry J, Alberts B M, Greenblatt J (1991) Using protein affinity chromatography to probe structure of protein machines. Methods Enzymol 208:24–45PubMedCrossRefGoogle Scholar
  69. Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function and diseases. Annu Rev Biochem 63:345–382PubMedCrossRefGoogle Scholar
  70. Fushman D, Cahill S, M A Lemmon, J Schlessinger, D Cowburn (1995) Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Proc Natl Acad Sci USA 92:816–820PubMedCrossRefGoogle Scholar
  71. Gabathuler R, Kvist S (1990) The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type — 2 consists of 3 separate amino acid segments at the carboxy terminus. J Cell Biol 111:1803–1810PubMedCrossRefGoogle Scholar
  72. Galla H J (1988) Spektroskopische Methoden in der Biochemie. Thieme, Stuttgart New YorkGoogle Scholar
  73. Gibrat J-F, Garnier J, Robson B (1987) Further development of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198:425–443PubMedCrossRefGoogle Scholar
  74. Gierasch L M, King J (eds) (1990) Protein folding: deciphering the second half of the genetic code. AAAS Press, Washington D CGoogle Scholar
  75. Glazer A N, De Lange R J, Sigman D S (1975) Chemical modifications of proteins. Elsevier, Amsterdam New YorkGoogle Scholar
  76. Goeoffroy F, Sodoyer R, Aujame L (1994) A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151:109–113CrossRefGoogle Scholar
  77. Gogol E P, Young M C, Kubasek W L, Jarvis T C, Hippel P H von (1992) Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. J Mol Biol 224:395–412PubMedCrossRefGoogle Scholar
  78. Görlich D, Kurzchalia T V, Wiedmann M, Rapoport T A (1991) Probing the molecular environment of translocating polypeptide chains by cross-linking. Methods Cell Biol 34:241–262PubMedCrossRefGoogle Scholar
  79. Graham J M (1993a) The isolation of nuclei and nuclear membranes from rat liver. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 19–28CrossRefGoogle Scholar
  80. Graham J M (1993b) Isolation of mitochondria, mitochondrial membranes, lysosomes, peroxisomes, and Golgi membranes from rat liver. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 29–40CrossRefGoogle Scholar
  81. Graham J M (1993c) Continuous flow electrophoresis In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 41–49CrossRefGoogle Scholar
  82. Graham R C, Karnovsky M J (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural histochemistry by a new technique. J Histochem Cytochem 14:291–302PubMedCrossRefGoogle Scholar
  83. Gregoriadis G (1994) Liposomes as immunoadjuvants and vaccine carriers: antigen entrapment. Immunomethods 4:210–216PubMedCrossRefGoogle Scholar
  84. Gromov P S, Celis J E (1994) Blot overlay assay for the identification of GTP-binding proteins. In: Celis J E (ed) Cell biology. A laboratory handbook. Academic Press, New York London, pp 313–316Google Scholar
  85. Gunsteren W F van, Mark A E (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem 204:947–961PubMedCrossRefGoogle Scholar
  86. Guttenberger M (1994) Protein determination. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 169–178Google Scholar
  87. Hagel L (1989) Gel filtration. In: Janson J-C, Ryden L (eds) Protein purification. Principles, high resolution methods, and applications. VCH, Weinheim, pp 63–106Google Scholar
  88. Hahn U, Heinemann U (1995) Structure determination, modeling and site-directed mutagenesis studies. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. de Gruyter, Berlin New York, pp 109–168Google Scholar
  89. Haley B E (1991) Nucleotide photoaffinity labeling of protein kinase subunits. Methods Enzymol 200:477–487PubMedCrossRefGoogle Scholar
  90. Hanks S K, Quinn A M (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62PubMedCrossRefGoogle Scholar
  91. Hanning K (1982) New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis 3:235–243CrossRefGoogle Scholar
  92. Haris P I, Chapman D (1994) Analysis of Polypeptide and protein structures using Fourier transform infrared spectroscopy. Methods Mol Biol 22:183–202PubMedGoogle Scholar
  93. Harlow E, Lane D (1988) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 511–552Google Scholar
  94. Harrison S C, Aggarwal A K (1990) DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem 59:933–969PubMedCrossRefGoogle Scholar
  95. Hart G W, Haltiwanger R S, Gordon G D, Kelly W G (1989) Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem 58:841–874PubMedCrossRefGoogle Scholar
  96. Harwood A J, Drury L (1990) New vectors for the expression of the E. coli 1ac Z gene in dictyostelium. Nucleic Acids Res 18:4292PubMedCrossRefGoogle Scholar
  97. Haselbeck A, Hösel W (1992) Labeling and detection of proteins and glycoproteins. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 56–69Google Scholar
  98. Haudenschild D R, Tondravi M M, Hofer U, Chen Q, Goetinck P F (1995) The role of coiled-coil alpha-helices and disulfide bonds in the assembly and stabilization of cartilage matrix protein subunits — a mutational analysis. J Biol Chem 270:23150–23154PubMedCrossRefGoogle Scholar
  99. Hauser N, Paulsson M (1994) Native cartilage matrix protein (CMP) — a compact trimer of subunits assembled via a coiled-coil alpha-helix. J Biol Chem 269:25747–25753PubMedGoogle Scholar
  100. Havel T, Wüthrich K (1984) A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular proton-proton proximities in solution. Bull Math Biol 46:673–698Google Scholar
  101. Hayashi R (1988) Enzymatic methods of protein/peptide sequencing from carboxyterminal end. In: Bhown A S (ed) Protein/peptide sequence analysis: current methodologies. CRC Press, Boca Raton, Fa, pp 145–159Google Scholar
  102. Hearn MTW (1989) High resolution reversed phase chromatography. In: Janson J-C, Ryden L (eds) Protein purification. Principles, high resolution methods, and applications. VCH, Weinheim, pp 175–206Google Scholar
  103. Heijne G von (1992) Membrane protein structure prediction: hydrophobicity analysis and the positive inside rule. J Mol Biol 225:487–494CrossRefGoogle Scholar
  104. Heijne G von (1994) Design of protein targeting signals and membrane protein engineering. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. de Gruyter, Berlin, pp 263–279Google Scholar
  105. Helenius A, Hammond C (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458PubMedCrossRefGoogle Scholar
  106. Hendrick J P, Hartl F-U (1993) Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62:349–384PubMedCrossRefGoogle Scholar
  107. Hennessey E S, Broome-Smith J K (1993) Gene-fusion techniques for determining membrane-protein topology. Curr Opin Struct Biol 3:524–531CrossRefGoogle Scholar
  108. Henrich C J (1994) Introduction of small molecules into cells using a transient cell permeabilization system. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 83–87Google Scholar
  109. Henzel W J, Billed T M, Stults J T, Wong S C, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence data bases. Proc Natl Acad Sci USA 90:5011–5015PubMedCrossRefGoogle Scholar
  110. Herfurth E, Wittmann-Liebold B (1995) Determination of peptide regions exposed at the surface of the bacterial ribosome with antibodies against synthetic peptides. Biol Chem Hoppe-Seyler 376:81–90PubMedCrossRefGoogle Scholar
  111. Herr S, Pepperkok R, Saffrich R, Weimann S, Ansorge W (1994) Electroporation of cells. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 37–43Google Scholar
  112. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–808PubMedCrossRefGoogle Scholar
  113. Hilt W, Wolf D H (1995) Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep 21:3–10PubMedCrossRefGoogle Scholar
  114. Hippel P H von (1994) Protein-DNA recognition: new perspectives and underlaying themes. Science 263:769–770CrossRefGoogle Scholar
  115. Hjerten S (1983) High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography. J Chromatogr 270:1–6CrossRefGoogle Scholar
  116. Hockensmith J W, Kubasek W L, Vorachek W R, Evertz E M, Hippel P H von (1991) Laser cross-linking of proteinnucleic acid complexes. Methods Enzymol 208:211–236PubMedCrossRefGoogle Scholar
  117. Hoffmann E, Rüterjans H (1988) Two-dimensional 1-H-NMR investigation of ribonuclease Tl. Resonance assignment, secondary and low resolution tertiary structures of ribonuclease Tl. Eur J Biochem 177:539–560PubMedCrossRefGoogle Scholar
  118. Hrkal Z, Rejnkova J (1982) Hydrophobic interaction chromatography of serum proteins on phenyl-sepharose CL-4B. J Chromatogr 242:385–388PubMedCrossRefGoogle Scholar
  119. Huber L A, Dupree P, Dotti C G (1995) Use of antisense oligonuleotides to study rab function in vivo. Methods Enzymol 257:302–312PubMedCrossRefGoogle Scholar
  120. Hübner G (1989) Enzymkinetik. In: Schellenberger A (Hrsg) Enzymkatalyse. Fischer, Jena, S 72–132CrossRefGoogle Scholar
  121. Hughes G J, Frutiger S, Paquet N, Pasquali C, Sanchez J C, Tissot J D, Bairoch A, Appel R D, Hochstrasser D F (1993) Human liver protein map: update 1993. Electrophoresis 14:1216–1222PubMedCrossRefGoogle Scholar
  122. Huisman T H (1987) High-performance liquid chromatography as a method to identify haemoglobin abnormalities. Acta Haematol 78:126–126Google Scholar
  123. Hunkapiller M W (1988) Gas phase sequence analysis of proteins/peptides. In: Protein/peptide sequence analysis: current methodologies, Bhown AS (ed) CRC Press, Boca Raton, Fa, pp 87–117Google Scholar
  124. Hunkapiller M W, Hood L E (1983) Analysis of phenylthiohydantoins by ultrasensitive gradient high-performance liquid chromatography. Methods Enzymol 91:486–493PubMedCrossRefGoogle Scholar
  125. Hunkapiller M W, Hewick R M, Dreyer W J, Hood L E (1983) High-sensitivity asequencing with a gas phase sequenator. Methods Enzymol 91:399–413PubMedCrossRefGoogle Scholar
  126. Huynh T V, Young R A, Davis R W (1985) Construction and screening cDNA libraries in γgt10 and γgt11. In: Glover D M (ed) DNA cloning: A practical approach, vol 1. IRL Press, Oxford, pp 49–78Google Scholar
  127. Jackson A P (1993) The isolation of clathrin-coated vesicles and purification of their protein components. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 83–96CrossRefGoogle Scholar
  128. Jaenicke R (1991) Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30:3147–3161PubMedCrossRefGoogle Scholar
  129. Jaenicke R, Seckler R (1992) Protein folding and protein refolding. FASEB J 6:2545–2552PubMedGoogle Scholar
  130. Jameson D M, Hazlett T L (1991) Time-resolved fluorescence in biology and biochemistry. In: Dewey T G (ed) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press, New YorkGoogle Scholar
  131. Janda K D, Lo C H, Barbas C F, Wirsching P, Lerner R A (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci USA 91:2532–2536PubMedCrossRefGoogle Scholar
  132. Janson J C, Ryden L (1989) Protein purification. Principles, high resolution methods, applications. VCH, WeinheimGoogle Scholar
  133. Jennings P A, Saalau-Bethell S M, Finn B E, Chen X, Matthews C R (1991) Mutational analysis of protein folding mechanisms. Methods Enzymol 202:113–126PubMedCrossRefGoogle Scholar
  134. Jenö P, Thomas G (1991) Affinity purification of protein kinases using adenosine 5′-triphosphate, amino acid, and peptide analogs. Methods Enzymol 200:178–187PubMedCrossRefGoogle Scholar
  135. Joachimiak A, Sigler P B (1991) Crystallization of protein-DNA complexes. Methods Enzymol 208:82–99PubMedCrossRefGoogle Scholar
  136. Johnson W C (1988) Secondary structure of proteins through circular dichroism spectroscopy, Annu Rev Biophys Biomol Struct 17:145–166CrossRefGoogle Scholar
  137. Josel H-P (1992) Chemoluminescence. Luminol. In: Kessler C (ed) Non-radioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 185–188CrossRefGoogle Scholar
  138. Jungblut P, Dzionara M, Klose J, Wittmann-Liebold B (1992) Identification of tissue proteins by amino acid analysis after purification by two-dimensional electrophoresis. J Protein Chem 11:603–612PubMedCrossRefGoogle Scholar
  139. Kadonaga J T (1991) Purification of sequence-specific binding proteins by DNA affinity chromatography. Methods Enzymol 208:10–23PubMedCrossRefGoogle Scholar
  140. Kaether C, Gerdes H-H (1995) Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett 369:267–271PubMedCrossRefGoogle Scholar
  141. Karas M, Hillenkamp F (1988) Laser-desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Biochem 60:2299–2301Google Scholar
  142. Karlsson E, Ryden L, Brewer J (1989) Ion exchange chromatography. In: Janson J-C, Ryden L (eds) Protein purification. Principles, high resolution methods, and applications. VCH, Weinheim, pp 107–148Google Scholar
  143. Karpatkin S, Shulman S, Howard L (1992) Crossed immunoelectrophoresis of human platelet membranes. Methods Enzymol 215:440–455PubMedCrossRefGoogle Scholar
  144. Karschin A, Thorne B A, Thomas G, Lester H A (1992) Vaccinia virus as vector to express ion channel genes. Methods Enzymol 207:408–423PubMedCrossRefGoogle Scholar
  145. Kelley W L, Georgopoulos C (1993) Chaperones and protein folding. Curr Opin Cell Biol 4:984–991CrossRefGoogle Scholar
  146. Kimura J H, Lohmander L S, Hascall V C (1984) Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from Swarm rat chondrosarcoma. J Cell Biochem 26:261–278PubMedCrossRefGoogle Scholar
  147. King S M, Kim H, Haley B E (1991) Strategies and reagents for photoaffinity labeling of mechanochemical proteins. Methods Enzymol 196:449–466PubMedCrossRefGoogle Scholar
  148. Klose J, Kobalz U (1995) High resolution two-dimensional gel electrophoresis. Electrophoresis 16:1043–1049CrossRefGoogle Scholar
  149. Koshland D E jr (1973) Protein shape and biological control. Sci Am 229:52–64PubMedCrossRefGoogle Scholar
  150. Kovarova H, Stulik J, Hochstrasser D F, Bures J, Melichar B, Jandik P (1994) Two-dimensional electrophoretic study of normal colon mucosa and colorectal cancer. Appl Theor Electrophor 4:103–106PubMedGoogle Scholar
  151. Krause K L, Volz K W, Lipscomb W N (1984) Structure at 2.9-A resolution of aspartate carbamoyltransferase complexed with the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate. Proc Natl Acad Sci USA 82:1643–1647CrossRefGoogle Scholar
  152. Krishna R G, Wold F (1993) Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol 67:265–289PubMedGoogle Scholar
  153. Kruft V, Wittmann-Liebold B (1991) Determination od peptide regions on the surface of the eubacterial and archaebacterial ribosome by limited proteolytic digestion. Biochemistry 30:11781–11787PubMedCrossRefGoogle Scholar
  154. Krutzsch H C (1988) Protein/peptide sequence analysis by mass spectrometry. In: Bhown A S (ed) Proein/peptide sequence analysis: current methodologies. CRC Press, Boca Raton, Fa, pp 161–180Google Scholar
  155. L’Italien J J (1988) Solid-phase method approaches to protein microsequence analysis. In: Bhown A S (ed) Protein/ peptide sequence analysis: current methodologies. CRC Press, Boca Raton, Fa, pp 73–86Google Scholar
  156. Labarca P, Latorre R (1992) Insertion of ion channels in planary lipid bilayers by vesicle fusion. Methods Enzymol 207:447–463PubMedCrossRefGoogle Scholar
  157. Laemmli U K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  158. Lawrence C E, Bryant S H (1991) Hydrophobie potentials from statistical analysis of protein structures. Methods Enzymol 202:20–31PubMedCrossRefGoogle Scholar
  159. Lee A G (1994a) Measurement of protein-protein interactions in reconstituted membrane vesicles using fluorescence spectroscopy. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 27. Biomembrane protocols II. Architecture and function. Humana Press, Totowa, New Jersey, pp 95–100Google Scholar
  160. Lee A G (1994b) Measurement of lipid-protein interactions in reconstituted membrane vesicles using fluorescence spectroscopy. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 27. Biomembrane protocols II. Architecture and function. Humana Press, Totowa, New Jersey, pp 101–107Google Scholar
  161. Lee K B, Loganathan D, Merchant C M, Linhardt R J (1990) Carbohydrate analysis of glycoproteins. A review. Appl Biochem Biotechnol 23:53–80PubMedCrossRefGoogle Scholar
  162. Leffers H (1994) Expression of recombinant proteins in the vaccinia virus expression system. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 155–163Google Scholar
  163. Lerner R A, Benkovic S J, Schultz P G (1991) At the crossroad of chemistry and immunology: catalytic antibodies. Science 252:659–667PubMedCrossRefGoogle Scholar
  164. Lewis C T, Hilvert D (1991) Engineered antibodies. Curr Opin Struct Biol 1:624–629CrossRefGoogle Scholar
  165. Liang P, Pardee A B (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971PubMedCrossRefGoogle Scholar
  166. Lim W I, Sauer R T, Lander A D (1991) Analysis of DNA-protein interactions by affinity coelectrophoresis. Methods Enzymol 208:196–210PubMedCrossRefGoogle Scholar
  167. Little C D, Rongish B J (1995) The extracellular matrix during heart development (review). Experientia 51:873–882PubMedCrossRefGoogle Scholar
  168. Lundblad R L, Noyes C M (1984) Chemical reagents for protein modification, vol I, IL CRC Press, Boca Raton, FaGoogle Scholar
  169. Lutsch G, Stahl J, Kärgel H J, Noll F, Bielka H (1990) Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver. Eur J Cell Biol 51:140–150PubMedGoogle Scholar
  170. Mach H, Middaugh C R, Lewis R V (1992) Statistical determination of the values of the extinction coefficients of tryptophane and tyrosine in native proteins. Anal Biochem 200:74–80PubMedCrossRefGoogle Scholar
  171. Machold J, Weise C, Utkin Y N, Franke P, Tsetlin V I, Hucho F (1995) A new class of photoactivatable and cleavable derivatives of neurotoxin II from Naja naja oxinana. Synthesis, characterization, and application for affinity labeling of the nicotinic acetylcholine receptor of torpedo. Eur J Biochem 228:947–954PubMedCrossRefGoogle Scholar
  172. Mann M, Wilm M (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sci 20:219–224PubMedCrossRefGoogle Scholar
  173. Mann S K O, Devreotes P N, Eliott S (1994) Cell biological, molecular genetic, and biochemical methods to examine Dictyostelium. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 1. Academic Press, New York London, pp 412–451Google Scholar
  174. Martel P (1992) Biophysical aspects of neutron scattering from vibrational modes of proteins. Prog Biophys Mol Biol 57:129–179PubMedCrossRefGoogle Scholar
  175. Matouschek A, Fersht A R (1991) Protein engineering in analysis of protein folding pathways and stability. Methods Enzymol 202:82–112PubMedCrossRefGoogle Scholar
  176. Matthew R C (1993) Pathways of protein folding. Annu Rev Biochem 62:653–684CrossRefGoogle Scholar
  177. Matthews B W (1993) Structural and genetic analysis of protein stability. Annu Rev Biochem 62:139–160PubMedCrossRefGoogle Scholar
  178. Matthews K S, Chakerian A E, Gardner J A (1991) Protein chemical modification as probe of structure-function relationships. Methods Enzymol 208:468–496PubMedCrossRefGoogle Scholar
  179. McNair R D, Kenny A J (1979) Proteins of the kidney microvillar membrane. The amphipathic form of dipeptidyl peptidase IV. Biochem J 179:379–395Google Scholar
  180. Meier T, Arni S, Malarkannan S, Poincelet M, Hoessli D (1992) Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminiscence: a nonradioactive method for cell-surface protein analysis. Anal Biochem 204:220–226PubMedCrossRefGoogle Scholar
  181. Merril C R, Joy J E, Creed G J (1994) Ultrasensitive silver-based stains for protein detection. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 281–287Google Scholar
  182. Middaugh C R, Vanin E F, Ji T H (1983) Chemical crosslinking of cell membranes. Mol Cell Biochem 50:115–141PubMedCrossRefGoogle Scholar
  183. Miller W T (1991) Peptide-based affinity labeling of adenosine cyclic monophosphate-dependent protein kinase. Methods Enzymol 200:500–508PubMedCrossRefGoogle Scholar
  184. Millhauser G L (1992) Selective placement of electron spin resonance spin labels. New structural methods for peptides and proteins. Trends Biochem Sci 17:448–452PubMedCrossRefGoogle Scholar
  185. Mothes W, Prehn S, Rapoport T A (1994) Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EM-BO J 13:3973–3982Google Scholar
  186. Muller W A (1994a) Determination of cell surface polarity by solid-phase lactoperoxidase iodination. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 27. Biomembrane protocols II. Architecture and function. Humana Press, Totowa, New Jersey, pp 19–30Google Scholar
  187. Muller WA (1994b) Biochemical methods to determine cell-suface topography. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 27. Biomembrane protocols II. Architecture and function. Humana Press, Totowa, New Jersey, pp 31–42Google Scholar
  188. Musacchio A, Gibson T, Letho V P, Saraste M (1992) SH3 — an abundant protein domain in search of a function. FEBS Lett 307:55–61PubMedCrossRefGoogle Scholar
  189. Nesbitt S A, Horton M A (1992) A nonradioactive biochemical characterization of membrane proteins using enhanced chemiluminiscence. Anal Biochem 206:267–272PubMedCrossRefGoogle Scholar
  190. Niehrs C, Beiswanger R, Huttner W B (1994) Protein tyrosine sulfation, 1993 — an update. Chem Biol Interact 92:257–271PubMedCrossRefGoogle Scholar
  191. Nilsson T, Lucocq J M, Mackay D, Warren G (1991) The membrane spanning domain of β-1,4-galactosyltransferase specifies trans-Golgi localization. EMBO J 10:3567–3575PubMedGoogle Scholar
  192. Nishikawa K, Noguchi T (1991) Predicting of protein secondary structure based on amino acid sequences. Methods Enzymol 202:31–44PubMedCrossRefGoogle Scholar
  193. Noel J P, Hamm H E, Sigler P B (1993) The 2.2 Å crystal structure of transducin-a complex with GTP-γ-S. Nature 366:654–663PubMedCrossRefGoogle Scholar
  194. Nowotny V, May R P, Nierhaus K H (1985) Neutron-scattering analysis of structural and functional aspects of the ribosome: The strategy of the glassy ribosome. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 101–111Google Scholar
  195. O’Farrell P H (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  196. Osterman L A (1984a) Preparative electrophoresis of proteins. In: Methods of protein and nucleic acid research, vol 1. Springer, Berlin Heidelberg New York, pp 98–101Google Scholar
  197. Osterman L A (1984b) Elution of proteins from the gel. In: Methods of protein and nucleic acid research, vol 1. Springer, Berlin Heidelberg New York, pp 86–91Google Scholar
  198. Osterman L A (1984c) Immunoelectrophoresis. In: Methods of protein and nucleic acid research, vol 2. Springer, Berlin Heidelberg New York, PP 39–61CrossRefGoogle Scholar
  199. Paech C, Christianson T (1994) Zymography of proteases. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 264–271Google Scholar
  200. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 179:347–358CrossRefGoogle Scholar
  201. Parrage G, Klevit R E (1991) Multidimensional nuclear magnetic resonance spectroscopy of DNA-binding proteins. Methods Enzymol 208:63–82CrossRefGoogle Scholar
  202. Pashev I G, Dimitrov S I, Angelov D (1991) Crosslinking of proteins to nucleic acids by ultraviolet laser irradiation. Trends Biochem Sci 16:323–326PubMedCrossRefGoogle Scholar
  203. Patterson S D, Aebersold R (1995) Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16:1791–1814PubMedCrossRefGoogle Scholar
  204. Pepperkok R, Saffrich R, Ansorge W (1994) Computer-automated capillary microinjection of macromolecules into living cells. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 22–29Google Scholar
  205. Peter, ME, Huber L A (1994) Two-dimensional gel-based mapping of in situ crosslinked GTP-binding proteins. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 317–322Google Scholar
  206. Peters K, Richards F M (1977) Chemical crosslinking reagents and problems in studies of membrane structure. Annu Rev Biochem 46:523–551PubMedCrossRefGoogle Scholar
  207. Phillies G D J (1990) Quasi-elastic light scattering. Anal Chem 62:1049A-1057AGoogle Scholar
  208. Privalov P L (1989) Thermodynamic problems of protein structure. Annu Rev Biophys Biomol Struct 18:47–69CrossRefGoogle Scholar
  209. Privalov P L (1992) Physical basis of the stability of the folded conformations of proteins. In: Creighton TE (ed) Protein folding. Freeman, San Francisco, pp 83–126Google Scholar
  210. Privalov P L, Potekhin S A (1986) Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol 131:4–51PubMedCrossRefGoogle Scholar
  211. Prockop D J, Kivirikko K J (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434PubMedCrossRefGoogle Scholar
  212. Provencher S W, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37PubMedCrossRefGoogle Scholar
  213. Rabilloud T (1990) Mechanisms of protein silver staining in Polyacrylamide gels: a 10-year synthesis (review). Electrophoresis 11:785–794PubMedCrossRefGoogle Scholar
  214. Rabilloud T (1992) A comparison between low background silver diamine and silver nitrate protein stains. Electrophoresis 13:429–439PubMedCrossRefGoogle Scholar
  215. Rangarajan M (1988) Chemical methods of amino acid sequence analysis from carboxyterminal end. In: Bhown A S (ed) Protein/peptide sequence analysis: current methodologies. CRC Press, Boca Raton, Fa, pp 135–144Google Scholar
  216. Regnier F E (1987) Chromatography of complex protein mixtures. J Chromatogr 418:115–143PubMedCrossRefGoogle Scholar
  217. Reithmeier RAF (1995) Characterization and modeling of membrane proteins using sequence analysis. Curr Opin Struct Biol 5:491–500PubMedCrossRefGoogle Scholar
  218. Rickwood D, Chambers J A A (1984) Centrifugal methods for characterising macromolecules and their interactions. In: Rickwood D (ed) Centrifugation, a practical approach. IRL Press, Oxford, pp 95–125Google Scholar
  219. Righetti P G (1983) Isoelectric focusing: theory, methodology and applications. Elsevier, Amsterdam New YorkGoogle Scholar
  220. Rizo J, Gierasch L M (1992) Constrained peptides: models of bioactive peptides and protein substructures. Annu Rev Biochem 61:387–418PubMedCrossRefGoogle Scholar
  221. Roder H (1995) Watching protein folding. Direct NMR observation of a transient folding intermediate provides new evidence for the importance of molten globules as general intermediates in protein folding. Nat Struct Biol 2:817–820PubMedCrossRefGoogle Scholar
  222. Rudick M J (1994) Controlled radioiodination of proteins. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 181–184Google Scholar
  223. Sarvazyan A P (1991) Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biomol Struct 20:321–342CrossRefGoogle Scholar
  224. Schägger H, Jagow G von (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379PubMedCrossRefGoogle Scholar
  225. Schatz M, Heel M van (1990) Invariant classification of molecular views in electron micrographs. Ultramicroscopy 32:255–264PubMedCrossRefGoogle Scholar
  226. Schellenberger A (1989) Enzymkatalyse. Einführung in die Chemie, Biochemie und Technologie der Enzyme. Fischer, Jena, S 196–292Google Scholar
  227. Scheller F W, Schubert F, Neumann B, Pfeiffer D, Hintsche R, Dransfeld I, Wollenberger U, Renneberg R, Warsinke A, Johanson G (1991) Second generation biosensors. Biosens Bioelectron 6:245–253PubMedCrossRefGoogle Scholar
  228. Schmitz K S (1990) Dynamic light scattering by macromolecules. Academic Press, New York LondonGoogle Scholar
  229. Schneider P, Ferguson M A J, McConville M J, Mehlert A, Homans S W, Bordier C (1990) Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. J Biol Chem 265:16955–19964PubMedGoogle Scholar
  230. Scott L, Schell M J, Hubbard A L (1993) Isolation of plasma membrane sheets and plasma membrane domains from rat liver. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 59–69CrossRefGoogle Scholar
  231. Shackelford D A, Yeh R Y, Zivin J A (1994) Detection of protein kinase activity after renaturation of proteins transferred from sodium dodecylsulfate-polyacrylamide gels to membranes. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 258–263Google Scholar
  232. Sharon N (1993) Lectin carbohydrate complexes of plants and animals. An atomic view. Trends Biochem Sci 18:221–223PubMedCrossRefGoogle Scholar
  233. Sharon N, Lis H (1982) Glycoproteins. In: Neurath H, Hill R L (eds) The proteins, vol 5. Academic Press, New York London, pp 1–144Google Scholar
  234. Sinensky M, Lutz R J (1992) The prenylation of proteins. Bioessays 14:25–30PubMedCrossRefGoogle Scholar
  235. Siuzdak G (1994) The emergence of mass spectrometry in biochemical research. Proc Natl Acad Sci USA 91:11290–11297PubMedCrossRefGoogle Scholar
  236. Smith G P (1985) Filamentous fusion phage. Novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  237. Spiess M (1995) Heads or tails — what determines the orientation of proteins in the membrane. FEBS Lett 369:76–79PubMedCrossRefGoogle Scholar
  238. Staros J V, Kotite N J, Cunningham L W (1992) Membraneimpermeant cross-linking reagents for structural and functional analyses of platelet membrane glycoproteins. Methods Enzymol 215:403–419PubMedCrossRefGoogle Scholar
  239. Stenmark H, Bucci C, Zerial M (1995) Expression of rab GTPase using recombinant vaccinia virus. Methods Enzymol 257:155–164PubMedCrossRefGoogle Scholar
  240. Stöffler G, Stöffler-Meilicke M (1985) Immuno electron microscopy on Escherichia coli ribosomes. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 28–46Google Scholar
  241. Stoller G, Rücknagel K P, Nierhaus K H, Schmid F X, Fischer G, Rahfeld J-U (1995) A ribosome-associated peptidyl prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14:4939–4948PubMedGoogle Scholar
  242. Sturtevant J M (1994) The thermodynamic effects of protein mutations. Curr Opin Struct Biol 4:69–78CrossRefGoogle Scholar
  243. Sutton, B J, M K Sohi (1994) Crystallisation of membrane proteins for X-ray analysis. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 27. Biomembrane protocols II. Architecture and function. Humana Press, Totowa, New Jersey, pp 1–18Google Scholar
  244. Tarasov T, Hilvert D (1994) Antibody catalysis. In: Wrede P, Schneider G (ed) Concepts in protein engineering and design. de Gruyter, Berlin, pp 237–261Google Scholar
  245. Tarr G E, Beecher J F, Bell M, McKean D (1978) Polyquaternary amines prevent peptide loss from sequenators. Anal Biochem 84:822–827CrossRefGoogle Scholar
  246. Thiede B, Wittmann-Liebold B, Bienert M, Krause E (1995) MAL DI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. FEBS Lett 357:65–69PubMedCrossRefGoogle Scholar
  247. Thiede B, Otto A, Zimny-Arndt O, Müller E C, Jungblut P (1996) Identification of human myocardial proteins separated by two-dimensional electrophoresis with matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis in pressGoogle Scholar
  248. Thomas P J, Qu B-H, Pedersen P L (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20:456–459PubMedCrossRefGoogle Scholar
  249. Tiselius A (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Trans Faraday Soc 33:524–531CrossRefGoogle Scholar
  250. Tissot J D, Schneider P, James R W, Daigneault R, Hochstrasser D F (1991) High-resolution two-dimensional protein electrophoresis of pathological plasma/serum. Appl Theor Electrophor 2:7–12PubMedGoogle Scholar
  251. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  252. Traut R R, Tewari D S, Sommer A, Gavino G R, Olson H M, Glitz D G (1985) Protein topography of ribosomal functional domains: effects of monoclonal antibodies to different epitopes in Escherichia coli protein L7/L12 on ribosome function and structure. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 286–308Google Scholar
  253. Turner G A (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clin Chim Acta 208:149–171PubMedCrossRefGoogle Scholar
  254. Vanbogelen R A, Sankar R, Clark R L, Bogan J A, Neidhardt F C (1992) The gene-protein data base of Escherichia coli, 5th edn. Electrophoresis 13:1014–1054PubMedCrossRefGoogle Scholar
  255. Villafranca JJ (ed) (1990) Current research in protein chemistry: techniques, structure, and function. Academic Press, New York LondonGoogle Scholar
  256. Wallace A, Saluz H P (1994) Detection of subpicogram quantities of protein in Polyacrylamide gels. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 288–298Google Scholar
  257. Walsh C T (1984) Suicide substrates, mechanism-based enzyme inactivators recent development. Annu Rev Biochem 53:493–535PubMedCrossRefGoogle Scholar
  258. Wang Y-L (1994) Microinjection of proteins into somatic cells: needle microinjection and scrape loading. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 16–21Google Scholar
  259. Wang Y, Fiol C J, DePaoli-Roach A A, Bell A W, Hermodson M A, Roach P J (1988) Identification of phosphorylation sites in peptides using a gas-phase sequencer. Anal Biochem 174:537–547PubMedCrossRefGoogle Scholar
  260. Weber PA (1991) Physical principles of protein crystallization. Adv Protein Chem 41:1–36PubMedCrossRefGoogle Scholar
  261. Weber K, Osborne M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412PubMedGoogle Scholar
  262. Weber K, Pringle J R, Osborn M (1972) Measurements of molecular weights by electrophoresis in SDS-acrylamide gel. Methods Enzymol 26:3–27PubMedCrossRefGoogle Scholar
  263. Weichsel A, Montfort W R (1995) Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancer drug 1843U89. Nat Struct Biol 2:1095–1101PubMedCrossRefGoogle Scholar
  264. Wells J A, Lowman H B (1992) Rapid evolution of peptide and protein binding properties in vitro. Curr Opin Struct Biol 2:597–604CrossRefGoogle Scholar
  265. Westermann P, Benndorf R, Lutsch G, Bielka H, Nygard O (1985) Arrangement of eukaryotic initiation factor 3 and messenger RNA within preinitiation complexes. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 642–657Google Scholar
  266. Westermeier R (1993) Electrophoresis in practice. A guide to theory and practice. Verlag Chemie, WeinheimGoogle Scholar
  267. Wettenhall REH, Aebersold R H, Hood L E (1991) Solidphase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Methods Enzymol 201:186–199PubMedCrossRefGoogle Scholar
  268. Williams R J P (1993) Protein dynamics studied by NMR. Eur Biophys J 21:393–401CrossRefGoogle Scholar
  269. Williams K R, Konigsberg W H (1991) Identification of amino acid residues at interface of protein-nucleic acid complexes by photochemical cross-linking. Methods Enzymol 208:516–539PubMedCrossRefGoogle Scholar
  270. Wilms M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Fentomole sequencing of proteins from Polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469CrossRefGoogle Scholar
  271. Winterbourne D J (1993) Chemical assays for proteins. In: Graham J M, Higgins J A (eds) Methods in molecular biology, vol 19. Biomembrane protocols I. Isolation and analysis. Humana Press, Totowa, New Jersey, pp 197–202CrossRefGoogle Scholar
  272. Wiseman T, Williston S, Brandts J F, Lin L-N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137PubMedCrossRefGoogle Scholar
  273. Wittmann-Liebold B (1992) High sensitive protein analysis. Pure Appl Chem 64:537–543CrossRefGoogle Scholar
  274. Wittmann-Liebold B, Ashman K (1985) On line detection of amino acid derivatives released by automated Edman degradation of Polypeptides. In: Tschesche H (ed) Modern methods in protein chemistry. de Gruyter, Berlin, pp 303–327Google Scholar
  275. Wittmann-Liebold B, Jungblut P (1994) Analysis and characterization of proteins. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. de Gruyter, Berlin New York, pp 47–107Google Scholar
  276. Wold F (1981) In vivo modification of proteins. Annu Rev Biochem 50:783–814PubMedCrossRefGoogle Scholar
  277. Wollenberger U, Schubert F, Pfeiffer D, Scheller F W (1993) Enhancing biosensor performance using multienzyme systems. Trends Biotechnol 11:255–262PubMedCrossRefGoogle Scholar
  278. Woodbury C P jr, Hippel P H von (1983) On the determinations of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry 22:4730–4737PubMedCrossRefGoogle Scholar
  279. Woodgett J R (1991) Use of synthetic peptides mimicking phosphorylation sites for affinity purification of proteinserine kinases. Methods Enzymol 200:169–178PubMedCrossRefGoogle Scholar
  280. Wüthrich K (1989) Determination od three-dimensional protein structure in solution by nuclear magnetic resonance. An overview. Methods Enzymol 177:125–131PubMedCrossRefGoogle Scholar
  281. Yeh E, Gustafson K, Boulianne G L (1995) Green fluorescent protein as a vital marker and reporter gene expression in drosophila. Proc Natl Acad Sci USA 92:7036–7040PubMedCrossRefGoogle Scholar
  282. Zheng J H, Knighton D R, Parello J, Taylor S S, Sowadski J M (1991) Crystallization of catalytic subunit of adenosine cyclic monophosphate-dependent protein kinase. Methods Enzymol 200:508–521PubMedCrossRefGoogle Scholar
  283. Zurzolo C, Le Bivic A, Rodriguez-Boulan E (1994) Cell surface biotinylation techniques. In: Celis J E (ed) Cell biology. A laboratory handbook, vol 3. Academic Press, New York London, pp 185–192Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Peter Westermann

There are no affiliations available

Personalised recommendations