Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 820 Accesses

Abstract

While the thermodynamic combustion models described in Chap. 2 are relatively easy to handle and are characterized by a low computational effort, they are lacking the ability to make predictions of the effects of important engine parameters on combustion without prior measurements. The main reasons for this deficiency are that major subprocesses are either not modeled at all or described by solely empirical correlations and that the assumption of an ideally mixed combustion chamber makes it impossible to estimate pollutant formation rates that are strongly affected by local temperatures and mixture compositions. On the other hand, the multidimensional CFD models that are based on the locally resolved solutions of mass-, energy- and momentum-conservation and that include detailed submodels for spray and combustion phenomena, are computationally expensive, and they demand that the user has a much deeper understanding of the governing physical and chemical processes in order to correctly interpret the simulation results. Moreover, the predictive quality with respect to global quantities such as pressure traces and apparent heat release rates is not necessarily better than with simpler models. This is because the many subprocesses taking place inside a combustion chamber are often interacting with each other such that relatively small errors encountered within particular submodels may add up to a considerable error in the overall result of the computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, GN (1963) The Theory of Turbulent Jets. MIT Press, Cambridge

    Google Scholar 

  2. Annand WJ (1963) Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines. Proc Inst Mech Engineers, vol 176, no 36, pp 973–990

    Article  Google Scholar 

  3. Arai M, Tabata M, Hiroyasu H, Shimizu M (1984) Desintegrating Process and Spray Characterization of Fuel Jet Injected by a Diesel Nozzle. SAE Paper 840275

    Book  Google Scholar 

  4. Barba C, Burkhardt C, Boulouchos K, Bargende M (2000) A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection. SAE Paper 2000–01-2933

    Book  Google Scholar 

  5. Bargende M (1990) Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. PhD Thesis, Technical University of Darmstadt, Germany

    Google Scholar 

  6. Bazari Z (1992) A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation. SAE Paper 920462

    Book  Google Scholar 

  7. Blizard NC, Keck JC (1974) Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines. SAE Paper 740191

    Book  Google Scholar 

  8. Borman GL, Johnson JH (1962) Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air. SAE Paper 598 C

    Book  Google Scholar 

  9. Boulouchos K, Eberle MK (1991) Aufgabenstellungen der Motorthermodynamik heute — Beispiele und Lösungsansätze. MTZ, vol 52, no 11, pp 574–583

    Google Scholar 

  10. Boulouchos K, Hannoschöck N (1986) Der Wärmetransport zwischen Arbeitsmedium und Brennraumwand. MTZ, vol 47, no 9

    Google Scholar 

  11. Boulouchos K, Isch R (1990) Modeling of Heat Transfer During Combustion: A Quasi-Dimensional Approach with Emphasis on Large Low-Speed Diesel Engines. Int Symp COMODIA 90, pp 321–328

    Google Scholar 

  12. Cebeci T, Bradshaw P (1988) Physical and Computational Aspects of Convective Heat Transfer. Springer, Berlin, New York

    Book  MATH  Google Scholar 

  13. Chiu WS, Shahed SM, Lyn WT (1976) A Transient Spay Mixing Model of Diesel Combustion. SAE Paper 760128

    Book  Google Scholar 

  14. Chmela FG, Orthaber GC (1999) Rate of Heat Release Prediction for Direct Injection Diesel Engines Based on Purely Mixing Controlled Combustion. SAE Paper 1999–01-0186

    Book  Google Scholar 

  15. Damkoehler G (1940) Der Einfluss der Turbulenz auf die Flammgeschwindigkeit in Gasgemischen. Z Elektrochem, vol 46, pp 601–626

    Google Scholar 

  16. DeNeef AT (1987) Untersuchung der Voreinspritzung am schneilaufenden, direkteinspritzenden Dieselmotor. PhD Thesis, ETH Zurich, Switzerland

    Google Scholar 

  17. Dent JC (1971) Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration. SAE Paper 710571

    Book  Google Scholar 

  18. Dent JC, Mehta PS (1981) Phenomenological Combustion Model for a Quiescent Chamber Diesel Engine. SAE Paper 811235

    Book  Google Scholar 

  19. Douaud AM, Eyzat P (1978) Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines. SAE Paper 780080

    Book  Google Scholar 

  20. Edelman RB, Harsha PT (1978) Laminar and Turbulent Gas Dynamics in Combus-tors — Current Status. Prog Energy Combust Sci, vol 4, no 1

    Google Scholar 

  21. Eiglmeier C (2000) Phänomenologische Modellbildung des gasseitigen Wandwärmeüberganges in Dieselmotoren. PhD Thesis, University of Hanover, Germany

    Google Scholar 

  22. Eiglmeier C, Merker GP (2000) New Approaches to the Phenomenological Modeling of the Gas-Side Wall Heat Transfer in Diesel Engines. MTZ Worldwide, no 5/2000, pp 17–24

    Google Scholar 

  23. Eiglmeier C, Lettmann H, Stiesch G, Merker GP (2001) A Detailed Phenomenological Model for Wall Heat Transfer Prediction in Diesel Engines. SAE Paper 2001–01–3265

    Book  Google Scholar 

  24. Elkotb MM (1982) Fuel Atomization for Spray Modeling. Prog Energy Combust Sci, vol 8, pp 61–91

    Article  Google Scholar 

  25. Franzke DE (1981) Beitrag zur Ermittlung eines Klopfkriteriums der ottomotorischen Verbrennung und zur Vorausberechnung der Klopfgrenze. Ph.D. Thesis, Technical University of Munich, Germany

    Google Scholar 

  26. Gao Z, Schreiber W (2001) The Effects of EGR and Split Fuel Injection on Diesel Engine Emisssion. Int J Automotive Technology, vol 2, no 4, pp 123–135

    Google Scholar 

  27. Gibson DH, Mahaffey WA, Mukerjee T (1990) In-Cylinder Flow and Combustion Modeling of 1.7L Caterpillar Engine. SAE Paper 900253

    Book  Google Scholar 

  28. Groff EG (1987) An Experimental Evaluation of an Entrainment Flame-Propagation Model. Combustion and Flame, vol 67, pp 153–162

    Article  Google Scholar 

  29. Heider G, Zeilinger K, Woschni G (1995) Two-Zone Calculation Model for the Prediction of NO Emissions from Diesel Engines. Proc 21st CIMAC Cong, Interlaken, Paper D52

    Google Scholar 

  30. Heywood JB (1988) Internal Combustion Engine Fundamentals. McGraw-Hill, New York

    Google Scholar 

  31. Heywood JB (1994) Combustion and its Modeling in Spark-Ignition Engines. Int Symp COMODIA 94, pp 1–15

    MathSciNet  Google Scholar 

  32. Hiroyasu H, Kadota T (1974) Fuel Droplet Size Distribution in Diesel Combustion Chamber. SAE Paper 740725

    Book  Google Scholar 

  33. Hiroyasu H, Kadota T, Arai M (1980) Combustion Modeling in Reciprocating Engines. Symp at GM-Research-Laboratories 1978, Plenum Press, New York, London, pp 349–405

    Google Scholar 

  34. Hiroyasu H, Kadota T, Arai M (1983a) Development and Use of a Spray Combustion Model to Predict Diesel Engine Efficiency and Pollutant Emissions, Part 1: Combustion Modeling. Bull JSME, vol 26, no 214, pp 569–575

    Article  Google Scholar 

  35. Hiroyasu H, Kadota T, Arai M (1983b) Development and Use of a Spray Combustion Model to Predict Diesel Engine Efficiency and Pollutant Emissions, Part 2: Computational Procedure and Parametric Study. Bull JSME, vol 26, no 214, pp 576–583

    Article  Google Scholar 

  36. Hohlbaum B (1992) Beitrag zur rechnerischen Untersuchungen der Stickoxid-Bildung schneilaufender Hochleistungsdieselmotoren. PhD Thesis, University of Karlsruhe, Germany

    Google Scholar 

  37. Hottel HC, Sarofim AF (1967) Radiative Transfer. Mc-Graw-Hill, New York

    Google Scholar 

  38. Hountalas DT, Kouremenos DA, Pariotis EG, Schwarz V, Binder KB (2002) Using a Phenomenological Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine. SAE Paper 2002–01-0074

    Book  Google Scholar 

  39. Keck JC (1982) Turbulent Flame Structure and Speed in Spark-Ignition Engines. Proc 19th Symp (Int) Combustion, pp 1451–1466, The Combustion Institute, Pittsburgh, PA

    Google Scholar 

  40. Kouremenos DA, Rakopoulos CD, Hountalas DT (1997) Multi-Zone Modeling for the Prediction of Pollutant Emissions and Performance of DI Diesel Engines. SAE Paper 970635

    Book  Google Scholar 

  41. Kuo TW (1987) Evaluation of a Phenomenological Spray-Combustion Model for Two Open-Chamber Diesel Engines. SAE Paper 872057

    Book  Google Scholar 

  42. Kuo TW, Yu RC, Shahed SM (1983) A Numerical Study of the Transient Evaporating Spray Mixing Process in the Diesel Environment. SAE Paper 831735

    Book  Google Scholar 

  43. Magnussen BF, Hjertager BH (1976) On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. 16th Symp (Int) Combust, pp 719–729, The Combustion Institute, Pittsburgh, PA

    Google Scholar 

  44. Merker GP, Hohlbaum B, Rauscher M (1993) Two-Zone Model for Calculations of Nitrogen-Oxide Formation in Direct-Injection Diesel Engines. SAE Paper 932454

    Book  Google Scholar 

  45. Metghalchi M, Keck JC (1980) Laminar Burning Velocity of Propane-Air Mixtures at Hight Temperature and Pressure. Combust Flame, vol 38, pp 143–154

    Article  Google Scholar 

  46. Metghalchi M, Keck JC (1982) Burning Velocities of Mixtures of Air with Methanol, Iso-octane, and Indolene at High Pressure and Temperature. Combust Flame, vol 48, pp 191–210

    Article  Google Scholar 

  47. Morel T, Keribar R (1985) A Model for Predicting Spatially and Time Resoved Con-vective Heat Transfer in Bowl-in Piston Combustion Chambers. SAE Paper 850204

    Book  Google Scholar 

  48. Morel T, Keribar R (1986) Heat Radiation in DI Diesel Engines. SAE Paper 860445

    Book  Google Scholar 

  49. Müller UC (1993) Reduzierte Reaktionsmechanismen für die Zündung von n-Heptan und iso-Oktan unter motorrelevanten Bedingungen. Ph.D. Thesis, RWTH Aachen, Germany

    Google Scholar 

  50. Müller UC, Peters N, Linan A (1992) Global Kinetics for n-Heptane Ignition at High Pressures. 24th Symp (Int) Combust, pp 777–784, The Combustion Institute, Pittsburgh, PA

    Google Scholar 

  51. Murakami A, Arai M, Hiroyasu H (1988) Swirl Measurements and Modeling in Direct Injection Diesel Engines. SAE Paper 880385

    Book  Google Scholar 

  52. Nagle J, Strickland-Constable RF (1962) Oxidation of Carbon between 1000–2000 C. Proc 5th Carbon Conf, vol 1, Pergamon Press, London

    Google Scholar 

  53. Nishida K, Hiroyasu H (1989) Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a DI Diesel Engine. SAE Paper 890269

    Book  Google Scholar 

  54. Otto F, Dittrich P, Wirbeleit F (1998) Status of 3D-Simulation of Diesel Combustion. Proc 3rd Int Indicating Symp, Mainz, pp 289–308

    Google Scholar 

  55. Papadopoulos S (1987) Reduktion der Stickoxidemissionen des direkteinspritzenden Dieselmotors durch Dieseloelwasseremulsionen bzw. Wassereinspritzung. Ph.D. Thesis, ETH Zurich, Switzerland

    Google Scholar 

  56. Poulos SG, Heywood JB (1983) The Effect of Chamber Geometry on Spark-Ignition Engine Combustion. SAE Paper 830334

    Book  Google Scholar 

  57. Ramos JI (1989) Internal Combustion Engine Modeling. Hemisphere, New York

    Google Scholar 

  58. Ranz WE, Marshall WR (1952) Evaporation from Drops. Chem Eng Prog, vol 48, no 3, pp 141–146 and 173–180

    Google Scholar 

  59. Rhodes DB, Keck JC (1985) Laminar Burning Speed Measurements of Indolene-Air-Diluent Mixtures at High Pressures and Temperature. SAE Paper 850047

    Google Scholar 

  60. Shahed SM, Chiu WS, Yumlu VS (1973) A Preliminary Model for the Formation of Nitric Oxide in Direct Injection Diesel Engines and Its Application in Parametric Studies. SAE Paper 730083

    Book  Google Scholar 

  61. Shahed SM, Chiu WS, Lyn WT (1975) A Mathematical Model of Diesel Combustion. Proc Inst Mech Engineers, C94/75, pp119–128

    Google Scholar 

  62. Shi SX, Su WH, Zhao KH, Yue Y (1993) Development of a Four-Zone Analytical Combustion Model for a DI Compression-Ignition Engine. Proc 20th CIMAC Cong, London, Paper D13

    Google Scholar 

  63. Stegemann J, Seebode J, Baumgarten C, Merker GP (2002) Influence of Throttle Effects at the Needle Seat on the Spray Characteristics of a Multihole Injection Nozzle. Proc 18th ILASS-Europe Conf, pp 31–36, Zaragoza, Spain

    Google Scholar 

  64. Stiesch G, Merker GP (1998) A Phenomenological Heat Release Model for Direct Injection Diesel Engines. 22nd CIMAC Int Congr Combust Engines, vol 2, pp 423–430

    Google Scholar 

  65. Stiesch G, Merker GP (1999) A Phenomenological Model for Accurate and Time Efficient Prediction of Heat Release and Exhaust Emissions in Direct-Injection Diesel Engines. SAE Paper 1999–01-1535

    Book  Google Scholar 

  66. Stiesch G, Eiglmeier C, Merker GP, Wirbeleit F (1999) Possibilities and Application of Phenomenological Combustion Models in Diesel Engines. MTZ worldwide, no 4/99, pp 19–24

    Google Scholar 

  67. Stringer FW, Clarke AE, Clarke JS (1969) The Spontaneous Ignition of Hydrocarbon Fuels in a Flowing System. Proc IMechE 184

    Google Scholar 

  68. Suhre B, Foster D (1992) In-Cylinder Soot Deposition Rates Due to Thermophoresis in a Direct Injection Engine. SAE Paper 921629

    Book  Google Scholar 

  69. Tabaczynski RJ, Ferguson CR, Radhakrishnan K (1977) A Turbulent Entrainment Model for Spark-Ignition Engine Combustion. SAE Paper 770647

    Book  Google Scholar 

  70. Tabaczynski RJ, Trinker FH, Shannon BAS (1980) Further Refinement and Validation of a Turbulent Flame Propagation Model for Spark-Ignition Engines. Combustion and Flame, vol 39, pp 111–121

    Article  Google Scholar 

  71. Thoma M, Stiesch G, Merker GP (2002) A Phenomenological Spray and Combustion Model for Diesel Engines with Pre-Injection. 5th Int Symp Internal Combust Diagnostics, pp 90–101, Baden-Baden, Germany

    Google Scholar 

  72. Varde KS, Popa DM, Varde LK (1984) Spdray Angle and Atomization in Diesel Sprays. SAE Paper 841055

    Book  Google Scholar 

  73. Warnatz J, Maas U, Dibble RW (2001) Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 3rd ed, Springer, Berlin

    MATH  Google Scholar 

  74. Weisser G, Boulouchos K (1995) NOEMI — A Tool for the Precalculation of Nitric Oxide Emissions of DI Diesel Engines. Proc 5th Symp “The Working Process of the Combustion Engine”, pp 23–50, Technical University Graz, Austria

    Google Scholar 

  75. Wolff A, Boulouchos K, Mueller R (1997) Computational Investigation of Unsteady Heat Flux Through an IC Engine Wall Including Soot Layer Dynamics. SAE Paper 970063

    Google Scholar 

  76. Worret R (2002) Entwicklung eines Kriteriums zur Vorausberechnung der Klopfgrenze. FVV-Report no 700, Forschungsvereinigung Verbrennungskraftmaschinen, Frankfurt, Germany

    Google Scholar 

  77. Worret R, Bernhardt S, Schwarz F, Spicher U (2002) Application of Different Cylinder Pressure Based Knock Detection Methods in Spark Ignition Engines. SAE Paper 2002–01-1668

    Book  Google Scholar 

  78. Woschni G (1967) A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Paper 670931

    Book  Google Scholar 

  79. Zhang Y (1992) A Simplified Model for Predicting Evaporating Spray Mixing Process in DI Diesel Engines. SAE Paper 922228

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiesch, G. (2003). Phenomenological Models. In: Modeling Engine Spray and Combustion Processes. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08790-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08790-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05629-1

  • Online ISBN: 978-3-662-08790-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics