Skip to main content

Microwave Ferrites

  • Chapter
Microwave Materials

Abstract

Emergence of ferrites arises due to the search for ferromagnetic materials with low eddy current losses. The high resistivity of these materials is the primary factor for controlling the eddy current losses, which is useful as cores for transformers and inductors. The present status is that ferrites have been established as materials of immense industrial use and ferrite devices find numerous applications in entire frequency range. At high frequencies, as in the communication field, the advantage of the ferrites become more pronounced specially at microwave levels. Great bulk of the microwave applications will be quite impossible without the assessment of ferrite and garnet materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Snoek, Phil. Tech. Rev., 8 (1946) p. 363.

    Google Scholar 

  2. L. Neel, Ann. Phys., 3 (1948) p. 137.

    Google Scholar 

  3. J.L. Snoek, “New Developments in Ferromagnetic Materials”; ( Elsevier Press Inc., New York 1949 ).

    MATH  Google Scholar 

  4. E.W. Goner, Philips Research Reports, 9 (1954) p. 295.

    Google Scholar 

  5. J.B. Goodenough, Magnetism and the Chemical Bond. ( Interscience-Wiley, London, 1962 ).

    Google Scholar 

  6. G. Blasse, Philips Research Reports, Suppl. No. 3 (1964).

    Google Scholar 

  7. P.B. Braun, Nature, 170 (1952) p. 1123.

    Article  Google Scholar 

  8. P.B. Baba, G.M. Argentine, W.E. Coumey, G.F. Dionne and B.H. Temme, Trans IEEE ‘Mag-6 (1972) p. 83.

    Google Scholar 

  9. G.O. White, C.A. Edmendson, R.B. Goldforb and C.E. Patton, J. Appl. Phys. 50 (1978) p. 2381.

    Article  Google Scholar 

  10. J. C. Sethares, M.H. Seavey, T.C. Purnhagen and M.R. Stiglitz, J. Appl. Phys., 35 (1964) p. 898.

    Article  Google Scholar 

  11. J.H.E. Griffithis, Nature (London) 158 (1946) p. 670.

    Article  Google Scholar 

  12. C. Kittel, Phys. Rev., 73 (1948) p. 155

    Article  Google Scholar 

  13. C. Kittel, Phys. Rev., 76 (1949) p. 743.

    Article  MATH  Google Scholar 

  14. D. Polder, Phys. Rev., 73 (1948) p. 1116.

    Article  Google Scholar 

  15. J.H. Van Vleck, Physica, 15 (1949) p. 197.

    Article  Google Scholar 

  16. S. Geller and M.A. Gilles, J. Phys. Chem. Solids 3 (1957) p. 30.

    Article  Google Scholar 

  17. R.K. Wangshers, Phys. Rev., 93 (1954) p. 68.

    Article  Google Scholar 

  18. M. Sparkes, Ferromagnetic Relaxation Theory ( McGraw-Hill, New York ) 1964.

    Google Scholar 

  19. J.H. Van Vleck, Phys. Rev., 78 (1950) p. 266.

    Article  MATH  Google Scholar 

  20. F. Brown and D. Park, Phys. Rev., 93 (1954) p. 381.

    Article  Google Scholar 

  21. H.G. Beljers and D. Polder, Nature 165 (1950) p. 800.

    Article  Google Scholar 

  22. W.A. Yager, J.K. Galt, F.R. Merritt and E.A. Wood, Phys. Rev., 80 (1950) p. 744.

    Article  Google Scholar 

  23. J.F. Dillon Jr., S. Geschwind and V. Jacoarino, Phys. Rev., 100 (1955) p. 75.

    Article  Google Scholar 

  24. P.E. Tannenwald, Phys. Rev., 100 (1955) p. 1713.

    Article  Google Scholar 

  25. R.W. Teals, J. Appl. Phys., Suppl. to 33 (1962) p. 129S.

    Google Scholar 

  26. E.A. Turov, “Ferromagnetic Resonance Ch-Vi S.V. Vonsovskii (ed.) ( Pergamon Press Ltd, London, 1966 ) p. 191.

    Google Scholar 

  27. W.A. Yager, J.K. Galt, R.F. Merritt, Phys. Rev., 99 (1955) p. 1203.

    Article  Google Scholar 

  28. R.C. Lecraw and E.G. Spencer, J. Phys. Soc. Japan, 17 suppl B.I, (1962) p. 401.

    Google Scholar 

  29. F. Keffer, Phys. Rev., 88, (1952) p. 686.

    Article  Google Scholar 

  30. A.M. Clogston, H. Suhl, L.R. Walker and P.W. Andersnon, Phys. Rev., 101 (1956) p. 903.

    Article  Google Scholar 

  31. A.M. Clogston, H. Suhl, L.R. Walker and P.W. J. Phys. Chem. Solids, 1 (1956) p. 129.

    Article  Google Scholar 

  32. E. Schlomann, J. Phys. Chem. Solids, 6 (1958) p. 242.

    Article  Google Scholar 

  33. L.R. Walker, Phys. Rev., 105 (1957) p. 390.

    Article  Google Scholar 

  34. Geschwind and Clogston, Phys. Rev., 108 (1957) p. 49.

    Article  Google Scholar 

  35. Schlomann, J. Phys, Chem. Solids, 6 (1958) p. 242.

    Article  Google Scholar 

  36. R.W. Damon, Revs. Modem Phys., 25 (1953) p. 239.

    Article  Google Scholar 

  37. N. Bloembergen and S. Wang, Phys. Rev., 93 (1954) 72.

    Article  Google Scholar 

  38. H. Suhl, J. Phys. Chem. Solids, 1 (1957) p. 207.

    Article  Google Scholar 

  39. H. Suhl, Proc., IRE, 44 (1956) p. 1270.

    Article  Google Scholar 

  40. C. Borghese and R. Roveda, J. Phys. Colloque Cl, Tome 32 (1971) p. 150.

    Google Scholar 

  41. H. Suhl, J. Phys., 29 (3) (1958) p. 416.

    Google Scholar 

  42. E. Schlomann, J. Phys. Chem. Solids, 6 (1958) p. 242.

    Article  Google Scholar 

  43. E. Schlomann, J.J. Green and U. Milano, J. Appl. Phys. 31 Suppl. (1960) No. 5 p. 386S.

    Article  Google Scholar 

  44. R.C. Lecraw, E.G. Spencer and C.S. Porter, J. Appl. Phys., 29 (3) (1958) p. 326.

    Article  Google Scholar 

  45. J.J. Green and E. Schlomann, J. Appl. Phys., 33 (S) No. 3 (1962) p. 1358.

    Article  Google Scholar 

  46. J.H. Saunders and J.J. Green, J. Appl. Phys. Suppl., 33 (3), (1963) p. 1372.

    Article  Google Scholar 

  47. E. Schlomann, J.J. Green, J.H. Saunders, IEEE Trans. on Magnetics, MAG-1 (1965) p. 168.

    Google Scholar 

  48. J.R. Samuel Dixon, J. Appl. Phys., 38 (1967) No. 3 p. 1417.

    Article  MathSciNet  Google Scholar 

  49. J.J. Green and C.E. Patton, J. Appl. Phys., 40 (i) (1969) p. 172.

    Article  Google Scholar 

  50. C.E. Patton, J. Appl. Phys., 40 (7) (1969) p. 2837.

    Article  Google Scholar 

  51. C.E. Patton and J.J. Green, IEEE Trans. Mag., MAG-5 (3) (1969) p. 626.

    Google Scholar 

  52. C.E. Patton, Proceedings of the ICF, (1970) p. 524.

    Google Scholar 

  53. C.E. Patton, J. Appl. Phys., 41 (1) (1970), p. 431.

    Article  Google Scholar 

  54. C.E. Patton, J Appl Phys., 41 (4) (1970) p. 1637.

    Article  Google Scholar 

  55. D.G. Scotter, J. Appl. Phys., 32 (10) 1971 ) p. 4088.

    Article  Google Scholar 

  56. Yu. M. Yakovlev, Yu N. Burdin, Yu R. Shilnikov and T.N. Bushueva, Soviet Phys-Solid State, 12 (10) (1971) p. 2475.

    Google Scholar 

  57. C.E. Patton, IEEE Transactions on magnetics (1972) p. 433.

    Google Scholar 

  58. D.G. Scotter, J. Appl. Phys, 43 (11) (1972) p. 4813.

    Article  Google Scholar 

  59. G.O. White, C.E. Patton and C.A. Edmendson, J. Appl, Phys. 50 (3) (1979) p. 2118.

    Article  Google Scholar 

  60. C.E. Patton and Wolfgang Jantz, J. Appl., Phys., 50 (11) (1979) p. 7082.

    Article  Google Scholar 

  61. C.E. Patton, Phys, Stat. Sol. (b) 92 (1979) p. 171 and 93 (1979) p. 7082.

    Google Scholar 

  62. Om Prakash and C.M. Srivastava, Bull. Mater. Sci., 2 (3) (1980) p. 181.

    Article  Google Scholar 

  63. Eikichi Sawado, Proceedings of ICF (1980) p. 818.

    Google Scholar 

  64. C.E. Patton, Proceeding of ICF (1980) p. 807.

    Google Scholar 

  65. L.M. Silber and C.E. Patton, IEEE Trans. Mag., MAG-18 (6) (1982) p. 1630.

    Google Scholar 

  66. Q.H.F. Vrehen, H.G. Beljers and J.G.M. delau, IEEE Trans. Magn. MAG-5 (1969) p. 617.

    Google Scholar 

  67. J.J. Green and T. Kohane, SCP and Solid St. Tech. 7 (1964) p. 46.

    Google Scholar 

  68. Isidore Baby and Ernst Schlomann, J. Appl. Phy. Suppl. 33 (1962) p. 1377.

    Article  Google Scholar 

  69. Bijoy Kumar Kuanr; Ph.D. Thesis, University of Delhi, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, G.P., Kuanr, B.K. (1994). Microwave Ferrites. In: Murthy, V.R.K., Sundaram, S., Viswanathan, B. (eds) Microwave Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08740-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08740-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08742-8

  • Online ISBN: 978-3-662-08740-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics