Skip to main content

Extracting and Searching for Structural Information: A Multiresolution Approach

  • Chapter
Methods in Proteome and Protein Analysis

Part of the book series: Principles and Practice ((PRINCIPLES))

  • 402 Accesses

Abstract

Nowadays, the scientific community is aware of the importance of the structure of proteins in order to understand the functional events in which they are involved. Indeed, a wide range of diseases are induced by modifications in their structural properties, leading to a loss of protein function (e.g. muscular dystrophy). Thus, protein structure elucidation can provide crucial information about its biochemical function. The two most widely spread methods of protein structure determination, at high resolution, are X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9: 423–32

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RK, Linde J, Sengupta J, Nierhaus KH, Frank J (2001) Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 311: 777–87

    Article  PubMed  CAS  Google Scholar 

  • Alberts B (1998) Three-dimensional fold of the human AQP1 water channel determined at 4 A resolution by electron crystallography of two-dimensional crystals embedded in ice. Cell 92: 291–4

    Article  PubMed  CAS  Google Scholar 

  • Auer M (2000) Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine. J Mol Med 78: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63: 862–922

    PubMed  CAS  Google Scholar 

  • Bârcena M, Ruiz T, Donate LE, Brown SE, Dixon NE, Radermacher M, Carazo JM (2001) The DnaB.DnaC complex: a structure based on dimers assembled around an occluded channel. EMBO J 20: 1462–8

    Article  PubMed  Google Scholar 

  • Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12: 679–84

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The Nucleic Acid Database: A Comprehensive Relational Database of Three-Dimensional Structures of Nucleic Acids. Biophys. J 63: 751–759. http://ndbserver.rutgers.edu/

    Google Scholar 

  • Bernal RA, Hafenstein S, Olson NH, Bowman VD, Chipman PR, Baker TS, Fane BA, Rossmann MG (2003) Structural studies of bacteriophage alpha3 assembly. J Mol Biol 325: 11–24

    Article  PubMed  CAS  Google Scholar 

  • Bottcher B, Bertsche I, Reuter R, Graber P (2000) Direct visualisation of conformational changes in EF(0)F(1) by electron microscopy. J Mol Biol 296: 449–57

    Article  PubMed  CAS  Google Scholar 

  • Carazo JM, Stelzer EH (1999) The Biolmage Database Project: organizing multidimensional biological images in an object-relational database. J Struct Biol 125: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa JL, Llorca O, Valpuesta JM (2001) Structural comparison of prokaryotic and eukaryotic chaperonins. Micron 32: 43–50

    Article  PubMed  CAS  Google Scholar 

  • de-Alarcón PA, Pascual-Montano A, Carazo JM (2002) Spin images and neural networks for efficient content-based retrieval in 3D object databases. Lecture notes on computer science 2383: 225–234

    Article  Google Scholar 

  • de-Alarcón PA, Pascual-Montano A, Gupta A, Carazo JM (2002) Modeling shape and topology of low-resolution density maps of biological macromolecules. Biophysical Journal 83: 619–632

    Article  PubMed  Google Scholar 

  • Edelsbrunner H, Liang J, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7: 1884–1897

    Article  PubMed  Google Scholar 

  • Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Tr. On Graphics 13: 43–72

    Google Scholar 

  • Eidhammer I, Jonassen I, Taylor W (2000) Structure Comparison and Structure Patterns. Journal of Computational Biology 7: 685–716

    Article  PubMed  CAS  Google Scholar 

  • Ferlenghi I, Gowen B, de Haas F, Mancini EJ, Garoff H, Sjoberg M, Fuller SD (1998) The first step: activation of the Semliki Forest virus spike protein precursor causes a localized conformational change in the trimeric spike. J Mol Biol 283: 71–81

    Article  PubMed  CAS  Google Scholar 

  • Hatch V, Zhi G, Smith L, Stull JT, Craig R, Lehman W (2001) Myosin light chain kinase binding to a unique site on F-actin revealed by three-dimensional image reconstruction. J Cell Biol 154: 611–7

    Article  PubMed  CAS  Google Scholar 

  • Hawkes P.W and Kasper E (1996) Principles of electron optics. Academic Press, vol 3, London

    Google Scholar 

  • Henrick and Thornton (1998) PQS: a protein quaternary structure file server. Trends Biochem Sci 23:358–61. PQS:http://www.pqs.ebi.ac.uk/

    Google Scholar 

  • Hubbard SJ, Gross KH, Argos P (1994) Intramolecular cavities in globular proteins. Protein Engineering 7: 613–626

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SJ, Argos P (1995) Detection of internal cavities in globular proteins. Protein Eng 8: 1011–5

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interaction. Proc. Natl. Acad. Sci. USA 93: 13–20

    Google Scholar 

  • Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272 (1): 121–32

    Article  PubMed  CAS  Google Scholar 

  • Rawat UB, Zavialov AV, Sengupta J, Valle M, Grassuci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J (2003). A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Kozubek M, Skalnikova M, Matula P, Bartova E, Rauch J, Neuhaus F, Eipel H, Hausmann M (2002) Automated microaxial tomography of cell nuclei after specific labelling by fluorescence in situ hybridization. Micron 33: 655–65

    Article  PubMed  CAS  Google Scholar 

  • Larsen TA, Olson AJ, Goodsell DS (1998) Morphology of protein-protein interfaces. Structure 6: 421–7

    Article  PubMed  CAS  Google Scholar 

  • Laskowski R A (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222. http://www.biochem.ucl.ac.uk/bsm/pdbsum/

    Google Scholar 

  • Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH (2002) Microtubule structure at 8A resolution. Structure (Camb) 10: 1317–28

    Article  CAS  Google Scholar 

  • Liang J, Edelsbrunner H, Fu P, Sudharkar PV, Subramaniam S (1998) Analytic shape computation of macromolecules I: molecular area and volume through alpha shape. Proteins: Structure, Function, and Genetics 33: 1–17

    Google Scholar 

  • Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramanian S (1998a) Analytical Shape Computation of Macromolecules: II. Inaccessible cavities in proteins. Proteins 33: 1829

    Google Scholar 

  • Liang J, Edelsbrunner H, Woodward C (1998b) Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci 7: 1884–97

    Google Scholar 

  • Llorca 0, Martin-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 135: 205–18

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, Martin-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin J Struct Biol 135: 205–18

    CAS  Google Scholar 

  • Lo Conte L, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2002) SCOP database in 2002: refinements accommodate structural genomics. Nucleic Acids Res 30: 264–7

    Article  PubMed  Google Scholar 

  • Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313: 1045–57

    Article  PubMed  CAS  Google Scholar 

  • McEwen BF, Marko M (2001) The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49: 553–64

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247:536–540. http://scop.mrc-lmb.cam.ac.uk/scop

    Google Scholar 

  • Ochoa WF, Kalko SG, Mateu MG, Gomes P, Andreu D, Domingo E, Fita I, Verdaguer N (2000) A multiply substituted G-H loop from foot- and-mouth disease virus in complex with a neutralizing antibody: a role for water molecules. J Gen Virol 81: 1495–505

    PubMed  CAS  Google Scholar 

  • Orlova EV, Papakosta M, Booy FP, van Heel M, Dolly JO (2003) Voltage-gated K(+) Channel from Mammalian Brain: 3D Structure at 18Â of the Complete (alpha)(4)(beta)(4) Complex. J Mol Biol 326: 1005–12

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Montano A, Donate LE, Valle M, Bârcena M, Pascual-Marqui RD, Carazo JM (2001) A novel neural network technique for analysis and classification of EM single-particle images. J Struct Biol 133: 233–45

    Article  PubMed  CAS  Google Scholar 

  • Pearl FM, Bennett CF, Bray JE, Harrison AP, Martin N, Shepherd A, Sillitoe I, Thornton J, Orengo CA (2003) The CATH database: an extended protein family resource for structural and functional genomics. Nucleic Acids Res 31: 452–5

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Cheng A, Reddy V, Melnyk P, Mitra AK (2000) Three-dimensional fold of the human AQP 1 water channel determined at 4 A resolution by electron crystallography of two-dimensional crystals embedded in ice. J Mol Biol 301: 369–87

    Article  PubMed  CAS  Google Scholar 

  • Sander C and Schneider R (1991) Database of homology derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68. http://www.cmbi.kun.nl/gv/hssp/

    Google Scholar 

  • Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae-tRNA-ribosome and subunit-subunit interactions. J Cell 107: 373–86

    CAS  Google Scholar 

  • Stark H (2002) Three-dimensional electron cryomicroscopy of ribosomes. Curr Protein Pept Sci 3: 79–91

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Dube P, Luhrmann R, Kastner B (2001) Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409: 539–42

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Henderson R (1999) Electron crystallography of bacteriorhodopsin with millisecond time resolution. J Struct Biol 128: 19–25

    Article  PubMed  CAS  Google Scholar 

  • Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K (2002) New electron microscopy database and deposition system. Trends Biochem Sci 27: 589

    Article  PubMed  CAS  Google Scholar 

  • Thouvenin E, Hewat E (2000) When two into one won’t go: fitting in the presence of steric hindrance and partial occupancy. Acta Crystallogr D Biol Crystallogr 56: 1350–7

    Article  PubMed  CAS  Google Scholar 

  • Wang DN, Kuhlbrandt W (1991) High-resolution electron crystallography of light-harvesting chlorophyll a/b-protein complex in three different media. J Mol Biol 217: 691–699

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Mukhopadhyay S, Pletnev SV, Baker TS, Kuhn RJ, Rossmann MG (2002) Placement of the structural proteins in Sindbis virus. J Virol 76: 11645–58

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiménez-Lozano, N., Chagoyen, M., de Alarcón, P.A., Carazo, J.M. (2004). Extracting and Searching for Structural Information: A Multiresolution Approach. In: Kamp, R.M., Calvete, J.J., Choli-Papadopoulou, T. (eds) Methods in Proteome and Protein Analysis. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08722-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08722-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05779-3

  • Online ISBN: 978-3-662-08722-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics