Advertisement

Portulaca grandiflora Hook. and P. oleracea L.: Formation of Betalains and Unsaturated Fatty Acids

  • H. Böhm
  • L. Böhm
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 37)

Abstract

The genus Portulaca L. comprises some 100 species which are distributed in tropical, subtropical, and temperate areas of the world (von Poellnitz 1934). Several habitats were examined in detail (e.g., Legrand 1962; Geesink 1969), and new species are still being described (e.g., Gilbert 1992). The family Portulacaceae, which was named after this genus, belongs to nine or ten families of the order Caryophyllales (Centrospermae) which are characterized by the occurrence of betalains (Reznik 1975; Behnke 1976; Engel and Barthlott 1988).

Keywords

Unsaturated Fatty Acid Plant Cell Culture Crassulacean Acid Metabolism Coconut Milk Portulaca Oleracea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi T (1970) Studies of biochemical genetics on flower color and its application to flower breeding. VI. Biogenesis of betalain pigment and variations of intracellular conditions in Portulaca callus. Bull Fac Agric Univ Miyazaki 17: 143–150Google Scholar
  2. Adachi T, Nakatsukasa M (1983) High-performance liquid chromatographic separation of betalains and their distribution in Portulaca grandiflora and related species. Z Pflanzenphysiol 109: 155–162Google Scholar
  3. Adachi T, Hoffmann F, Yokoh H (1982) Abnormality of chromosomal behaviour and restriction of cell division in intergeneric and interspecific protoplast fusion products. In: Fujiwara A (ed) Plant tissue culture 1982, Maruzen, Tokyo, pp 441–442Google Scholar
  4. Adachi T, Nakatsukasa M, Asaka Y, Uta T (1985) Genetic analysis and some properties of flower color mutants found in the progenies of X-ray irradiated Portulaca sp. Jewel ( Jap. ). Jpn J Breed 35: 183–192Google Scholar
  5. Behnke HD (1976) A tabulated survey of some characters of systematic importance in centrospermous families. Plant Syst Evol 126: 95–98CrossRefGoogle Scholar
  6. Behnke HD, Mabry TJ, Eifert IJ, Pop L (1975) P-type sieve element plastids and betalains in Portulacaceae (including Ceraria, Portulacaria, Talinella). Can J Bot 53: 2103–2109CrossRefGoogle Scholar
  7. Böhm H (1981) Die Bildung sekundärer Naturstoffe durch pflanzliche Zellkulturen. Biol Rundsch 19: 138–154Google Scholar
  8. Böhm H, Rink E (1988) Betalains. In: Constabel F, Vasil IK (eds) Phytochemicals in plant cell cultures. Academic Press, London, pp 449–463CrossRefGoogle Scholar
  9. Böhm H, Böhm L, Rink E (1991) Establishment and characterization of a betaxanthin-producing cell culture from Portulaca grandiflora. Plant Cell Tissue Organ Cult 26: 75–82CrossRefGoogle Scholar
  10. Boros G (1960) Unsere Küchen-und Gewürzkräuter. Ulmer, Stuttgart, S 59–60Google Scholar
  11. Cyunel E (1989) Basella alba L.: in vitro culture and the production of betalains. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 7. Medicinal and aromatic plants II. Springer, Berlin Heidelberg New York, pp 47–68Google Scholar
  12. Danin A, Baker J, Baker HG (1978) Cytogeography and taxonomy of the Portulaca oleracea L. polyploid complex. Isr J Bot 27: 177–211Google Scholar
  13. Döpp H, Musso H (1973) Fliegenpilzfarbstoffe 11. Isolierung and Chromophore der Farbstoffe aus Amanita muscaria. Chem Ber 106: 3473–3482CrossRefGoogle Scholar
  14. Endress R (1976) Betacyan-Akkumulation in Kallus von Portulaca grandiflora var. JR unter dem Einfluß von Phytohormonen und Cu’ -Ionen auf unterschiedlichen Grundmedien. Biochem Physiol Pflanz 169: 87–98Google Scholar
  15. Endress R (1977) Einfluß möglicher Phosphodiesterase-Inhibitoren und cAMP auf die BetacyanAkkumulation. Phytochemistry 16: 1549–1554CrossRefGoogle Scholar
  16. Endress R (1979) Mögliche Beteiligung einer Phenylalaninhydroxylase und einer Tyrosinase bei der Betacyan-Akkumulation in Portulaca Kallus. Biochem Physiol Pflanz 174: 17–25Google Scholar
  17. Endress R, Jäger A, Kreis W (1984) Catecholamine biosynthesis dependent on the dark in betacyaninforming Portulaca callus. J Plant Physiol 115: 291–295PubMedCrossRefGoogle Scholar
  18. Engel T, Barthlott W (1988) Micromorphology of epicuticular waxes in centrosperms. Plant Syst Evol 161: 71–85CrossRefGoogle Scholar
  19. Engst W, Petrzika M, Macholz R (1991) Untersuchungen zur Fettsäurezusammensetzung von Biomasselipiden. Nahrung 35: 695–700CrossRefGoogle Scholar
  20. Enomoto N (1923) Studies on an ever-segregating race in Portulaca grandiflora. Jpn J Bot 1: 137–151Google Scholar
  21. Enomoto N (1927) Further studies on the ever-segregating in Portulaca grandiflora, L., with special reference to a case of triple allelomorphism. Jpn J Bot 3: 267–288Google Scholar
  22. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158PubMedCrossRefGoogle Scholar
  23. Geesink R (1969) An account of the genus Portulaca in Indo-Australia and the Pacific (Portulacaceae). Blumea 17: 275–301Google Scholar
  24. Ghafoorunissa, Pangrekar J (1993) Vegetables as sources of a-linolenic acid in Indian diets. Food Chem 47: 121–124CrossRefGoogle Scholar
  25. Gilbert MG (1992) A new species of Portulaca from Kenya and Somalia (Portulaca decorticans sp. nov.). Kew Bull 47: 693–697CrossRefGoogle Scholar
  26. Hegnauer R (1969) Chemotaxonomie der Pflanzen, Bd 5. Birkhäuser, Basel, S 383–387Google Scholar
  27. Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J Agric Food Chem 40: 2379–2383CrossRefGoogle Scholar
  28. Ikeno S (1922) Vererbungsversuche über die Blütenfarbe bei Portulaca grandiflora. Z Indukt Abstammungs Vererbungsl 29: 122–135Google Scholar
  29. Ikeno S (1924) Studien über die Vererbung der Blütenfarbe bei Portulaca grandiflora. Jpn J Bot 2: 45–62Google Scholar
  30. Ikeno S (1928) Studien über die Vererbung der Blütenfarbe bei Portulaca grandiflora. Jpn J Bot 4: 189–218Google Scholar
  31. Imperato F (1975) Acylated betacyanins of Portulaca oleracea. Phytochemistry 14: 2091–2092 Jirovetz L, Koch HP, Jaeger W, Fritz G, Rest G (1993) Purslane (Portulaca oleracea L.): Investigation of the plant constituents by means of chromatographic/spectroscopic systems for the control of the described cholesterol reduction. Ernährung 17: 226–227Google Scholar
  32. Keller F, Lüth J, Röthlisberger K (1986) 100 Gemüse. Zollikofen, S 240Google Scholar
  33. Kimler L, Larson RA, Messenger L, Moore JB, Mabry TJ (1971) Betalamic acid, a new naturally occurring pigment. Chem Commun: 1329–1330Google Scholar
  34. Kishima Y, Nozaki K, Akashi R, Adachi T (1991a) Light-inducible pigmentation in Portulaca callus; selection of a high betalain-producing cell line. Plant Cell Rep 10: 304–307CrossRefGoogle Scholar
  35. Kishima Y, Suiko M, Adachi T (1991b) Betalain pigmentation in petals of Portulaca is preceded by a dramatic tyrosine accumulation. J Plant Physiol 137: 505–506CrossRefGoogle Scholar
  36. Kishima Y, Hatade C, Suiko M, Adachi T (1992) Comparative analysis of petal proteins in red and white lines from near-isogenic Portulaca sp. Jewel plants. Euphytica 61: 67–71Google Scholar
  37. Koch HP (1988) Portulak, Omega-3-Fettsäuren in einer alten Arzneipflanze. Dtsch Apoth Ztg 128: 2493–2495Google Scholar
  38. Koch K, Kennedy RA (1980) Characteristics of Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiol 65: 193–197PubMedCrossRefGoogle Scholar
  39. Konar RN (1978) In vitro studies on Portulaca grand(flora Hook. Z. Pflanzenphysiol 86: 443–451 Ku SB, Shieh YJ, Reger BJ, Black CC (1981) Photosynthetic characteristics of Portulaca grandifiora, a succulent C4 dicot. Plant Physiol 68: 1073–1080Google Scholar
  40. Legrand CD (1962) Las especies americanas de Portulaca. An Mus Nac Hist Nat Montev 2a; 7: 147 pp Lercker GA (1992) Perplexity on fatty acid identification in purslane (Portulaca oleracea) tissues. J Am Oil Chem Soc 69: 193Google Scholar
  41. Liebisch HW, Böhm H (1981) Untersuchungen zur Physiologie der Betalainbildung in Zellkulturen von Portulaca grandifiora. Pharmazie 36: 218Google Scholar
  42. Mohamed AJ, Hussein AS (1994) Chemical composition of purslane (Portulaca oleracea). Plant Foods Hum Nutr 45: 1–9PubMedCrossRefGoogle Scholar
  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  44. Nagata T, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99: 12–20CrossRefGoogle Scholar
  45. Nyananyo BL (1986) A survey of leaf flavonoids in the Portulacaceae. Biochem Syst Ecol 14: 633–635 Nyananyo BL (1987) Taxonomic studies in the genus Portulaca L. ( Portulacaceae ). Feddes Repert 98: 397–402Google Scholar
  46. Omara-Alwala TR, Mebrahtu T, Prior DE, Ezekwe MO (1991) Omega-three fatty acids in purslane (Portulaca oleracea) tissues. J Am Oil Chem Soc 68: 198–199CrossRefGoogle Scholar
  47. Ootani S, Hagiwara T (1969) Inheritance of flower colors and related chymochromic pigments in F, hybrids of common Portulaca, Portulaca grandifiora. Jpn J Genet 44: 65–79CrossRefGoogle Scholar
  48. Pareys Blumengärtnerei, Bd 1, 2. Aufl (1958) Parey, Berlin, S 584.Google Scholar
  49. Piattelli M, Minale L (1964) Pigments of Centrospermae. Phytochemistry 3: 547–557CrossRefGoogle Scholar
  50. Piattelli M, Minale L, Nicolaus RA (1965) Ulteriori ricerche sulle betaxanthine. Rend Accad Sci Fis Mat Naples 32: 55–56Google Scholar
  51. Reznik H (1975) Betalaine. Ber Dtsch Bot Ges 88: 179–190Google Scholar
  52. Reznik H (1978) Das Vorkommen von Betalaminsäure bei Centrospermen. Z Pflanzenphysiol 87: 95–102Google Scholar
  53. Riederer HF, Zryd JP (1986) Portulaca grandiflora: a model plant for the study of secondary metabolites biosynthesis in in vitro plant cells. Experientia 42: 713.Google Scholar
  54. Rink E, Böhm H (1991) Effect of DOPA feeding on betaxanthins in various species of Centrospermae. Phytochemistry 30: 1109–1112CrossRefGoogle Scholar
  55. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204CrossRefGoogle Scholar
  56. Schneider K (1992) Letter to the editor. J Am Oil Chem Soc 69: 194Google Scholar
  57. Schröder W, Böhm H (1984) Betacyanin concentrations in young cell cultures from Portulaca grandifiora—an analysis of variation. Plant Cell Rep 3: 14–17CrossRefGoogle Scholar
  58. Schröder W, Böhm H (1995) Once more: secondary metabolite concentrations in whole plants and in cell cultures derived therefrom. J Plant Physiol 145: 126–130CrossRefGoogle Scholar
  59. Schwartz SJ, von Elbe JH (1980) Quantitative determination of individual betacyanin pigments by high-performance liquid chromatography. J Agric Food Chem 28: 540–543CrossRefGoogle Scholar
  60. Simopoulos AP, Salem N (1986) Purslane: a terrestrial source of omega-3 fatty acids. N Engl J Med 315: 833PubMedGoogle Scholar
  61. Simopoulos AP, Norman HA, Gillaspy JE, Duke JA (1992) Common purslane: a source of omega-3 fatty acids and antioxidants. J Am Coll Nutr 11: 374–382PubMedGoogle Scholar
  62. Simopoulos AP, Norman HA, Gillaspy JE (1995) Purslane in human nutrition and its potential for world agriculture. In: Simopoulos AP (ed) Plants in human nutrition. Karger, Basel, pp 47–74Google Scholar
  63. Steglich W, Strack D (1990) Betalains. Tn: Brossi A (ed) The alkaloids, vol 39. Academic Press, London, pp 1–62Google Scholar
  64. Strack D, Reznik H (1979) High-performance liquid chromatographic analysis of betaxanthins in Centrospermae (Caryophyllales). Z. Pflanzenphysiol 94: 163–167Google Scholar
  65. Strack D, Schmitt D, Reznik H, Boland W, Grotjahn L, Wray V (1987) Humilixanthin, a new betaxanthin from Rivina humilis. Phytochemistry 26: 2285–2287CrossRefGoogle Scholar
  66. Strack D, Steglich W, Wray V (1993) Betalains. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, vol 8. Academic Press, London, pp 421–450Google Scholar
  67. Trezzini GF, Zryd JP (1991) Two betalains from Portulaca grandifiora. Phytochemistry 30: 1897–1899CrossRefGoogle Scholar
  68. Vaskovsky VE, Khotimchenko SV (1992) Chemotaxonomic approach protects against mistakes in polyunsaturated fatty acid analyses in plants. J Am Oil Chem Soc 69: 598CrossRefGoogle Scholar
  69. Vincent KR, Scholz RG (1978) Separation and quantification of red beet betacyanins and betaxanthins by high-performance liquid chromatography. J Agric Food Chem 26: 812–816CrossRefGoogle Scholar
  70. von Poellnitz K (1934) Versuch einer Monographie der Gattung Portulaca L. Feddes Repert 37: 240–320CrossRefGoogle Scholar
  71. White PR (1963) Cultivation of animal and plant cells. 2nd edn. Ronald Press, New York Willet WC (1994) Diet and health. What should we eat? Science 264: 532–537Google Scholar
  72. Wolfram G (1989) Bedeutung der w-3 Fettsäuren in der Ernährung des Menschen. Ernähr umsch 36: 319–330Google Scholar
  73. Wyler H, Dreiding AS (1961) Über Betacyane, die stickstoffhaltigen Farbstoffe der Centrospermen. Experienta 17: 23–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • H. Böhm
    • 1
  • L. Böhm
    • 2
  1. 1.Deutsches Institut für ErnährungsforschungBergholz-RehbrückeGermany
  2. 2.PotsdamGermany

Personalised recommendations