Gloeophyllum odoratum (Brown Rot Fungus): In Vitro Culture, Growth, and Production of Volatiles, Sterols, and Triterpenes

  • K. Kahlos
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 37)


The fruiting bodies of the brown rot fungus Gloeophyllum odoratum (Wulf. ex Fr.) Imaz. syn. Trametes odorata (Wulf. ex Fr.) Osmoporus odoratus (Wulf. ex Fr.) (Aphyllophorales, Basidiomycetes) are found in coniferous forests, chiefly in northern and rocky mountains in central Europe, in Asia, and occasionally in North America. In Fennoscandia, the fungus grows mostly on old stumps of the Norway spruce [Picea abies (L.) Karst.], very rarely on pine (Pinus sylvestris L.). The perennial brown fruit bodies are knotty, wedge- or plate-like medium-sized or large. The young parts are ochraceous to light brown in color (Fig. 1), later becoming dark brown to almost black or blackish gray. G. odoratum is not very common. The other known Gloeophyllum species are G. protactum, G. sepiarium, G. abietinum and G. trabeum. Only the fresh fruit bodies of G. odoratum produce a strong scent of aniseed, when it grows on spruce (Ryvärden 1978; Gilbertson and Ryvärden 1986).


Liquid Culture Fruiting Body Malt Extract Agar Linalool Oxide Ergosterol Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham W-R, Haussen HP, Möhringer C (1988) Novel sesquiterpene ethers from liquid cultures of the wood-rotting fungus Lentinus lepideus. Z Naturforsch 43C: 24–28Google Scholar
  2. Ahmad S, Hussain G, Raza QS (1976) Triterpenoids of Phellinus gilvus. Phytochemistry 15: 2000Google Scholar
  3. Allan CR, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3: 285–287CrossRefGoogle Scholar
  4. Andersson CG, Epstein WW (1971) Metabolic intermediates in the biological oxidation of lanosterol to the eburicoic acid. Phytochemistry 10: 2511–2515CrossRefGoogle Scholar
  5. Anke T (1978) Antibiotika aus Basidiomyceten. Z Mykol 44: 131–141Google Scholar
  6. Badcock EC (1939) Preliminary account of the odour of wood-destroying fungi in culture. Trans Br Mycol Soc 23: 188–198CrossRefGoogle Scholar
  7. Bansal SK, Knoche HW (1981) Sterol methyltransferase from Uromyces phaseoli: an investigation of the first and the second transmethylation reactions. Phytochemistry 20: 1269–1277CrossRefGoogle Scholar
  8. Batey LL, Pinhey, JT, Ralph BJ, Simes JJH (1972) Constituents of Poloporus cretaceous and Dadalea traben. Aust J Chem 25: 2511–2515CrossRefGoogle Scholar
  9. Birkinshaw JH, Findlay WPK (1940) Biochemistry of wood-rotting fungi I. Metabolic products of Lentinus lepideus. 34: 82–88Google Scholar
  10. Brennan PJ, Griffin PFS, Losel MD, Tyrrell D (1974) The lipids of fungi. In: Holman RT (ed) Progress in the chemistry of fatty acids and other lipids, vol 14. Pergamon Press, London, pp 51–83Google Scholar
  11. Brunke E-J (1990) Essential oils as starting materials for the production of aroma chemicals. Dragoco Rep 4: 123–139Google Scholar
  12. Cambie RC, Duve RN, Parnell JC (1972) Chemistry of fungi IX. Constituents of Trametes odorata. NZJ Sci 15: 200–208Google Scholar
  13. Cheng KP, Nagano H, Bang L, Ourisson G (1977) Chemistry and biochemistry of Chinese drugs part I, b Sterol derivatives, cytotoxic to hepatoma cells, isolated from the drug Bombyx cum Botryte. J Chem Res (S): 217Google Scholar
  14. Collins RP (1979) The production of volatile compounds by filamentous fungi. Dev Ind Microbiol 20: 239–245Google Scholar
  15. Connick WJ Jr, French CR (1991) Volatiles emitted during the sexual stage of the Candida thistle rust fungus and by thistle flowers. J Agric Food Chem 39: 185–188.CrossRefGoogle Scholar
  16. De Bernadi M, Mellerio G, Vidadi G, Vita-Finzi P, Fronza G (1980) Fungal metabolites. Part 5. Uvidins, new drimarane sesquiterpenes from Lactarius uridus Fries. J Chem Soc Perkin Trans 1: 221–226CrossRefGoogle Scholar
  17. Devys M, Barbier M (1969) Biosynthèse de l’acide eburicoique à partir de l’acide tramétenolique. Bull Soc Chim Biol 51: 925–933PubMedGoogle Scholar
  18. Fukuyama Y, Sato T, Asakawa Y, Takemoto T (1982) A potent cytotoxic warburganal and related drimane-type sesquiterpenoids from Polygonum hydropiper. Phytochemistry 21: 2895–2898CrossRefGoogle Scholar
  19. Funk A, Brodelius P (1990) Infuence of growth regulators and elicitor on phenylpropanoid metab- olism in suspension cultures of Vanilla planifolia. Phytochemistry 29: 845–849CrossRefGoogle Scholar
  20. Gallois A, Gross B, Langlois D, Spinnler H-E, Brunerie P (1990) Influence of culture conditions on production by 29 ligninolytic Basidiomycetes. Mycol Res 94: 494–504CrossRefGoogle Scholar
  21. Gilbertson RL, Ryvärden L (1986) North American Polypores Fungiflora, vol 1. AportiporusLindtneria, Gronslands Gratiske, Oslo A/S, 433 ppGoogle Scholar
  22. Gross B, Gallois A, Spinnler H-E, Langlois D (1989) Volatile compounds produced by the ligninolytic fungus Phlebia radiata Fr. (Basidiomycetes) and influence of the strain specificity on the odorous profile. J Biotechnol 10: 303–308CrossRefGoogle Scholar
  23. Gunatilaka AAL, Kopinchand Y, Schmitz FJ, Djerasssi C (1981) Minor and trace sterols in marine invertebrates. 26. Isolation and structure elucidation of nine new 5a, 8a-epidioxysterols from four marine organisms. J Org Chem 46: 3860–3866CrossRefGoogle Scholar
  24. Halim AF, Collins RP (1971) An analysis of the odorous constituents of Trametes odorata. Lloydia 34: 451–452Google Scholar
  25. Halsall TG, Hodges R, Sayer GC (1959) The chemistry of the triterpenes and related compound. Part XXXVI. Some constituents of Trametes odorata ( Wulf.) Fr. J Chem Soc: 2036–2040Google Scholar
  26. Haussen H-P (1985) Sesquiterpene alcohols from Lentinus lepideus. Phytochemistry 6: 1293–1294CrossRefGoogle Scholar
  27. Hanssen H-P, Abraham W-R (1987) Odoriferous compounds from liquid cultures of Gloeophyllum odoratum and Lentinellus cochleatus ( Basidomycotina ). Flavour Fragrance 65: 1151–1157Google Scholar
  28. Hanssen H-P, Sinnwell W, Abraham W-R (1986) Volatile fragrance compounds from the fungus Gloeophyllum odoratum (Basidiomycotina). Z Naturforsch 41 C: 825–829Google Scholar
  29. Higley TL, Kirk K (1979) Mechanism of wood decay and the unique features of heartwoods. Phytopathology 69: 1151–1157CrossRefGoogle Scholar
  30. Hiltunen R, Huhtikangas SA, Hovinen S (1979) Breeding of a zero erucic spring turnip-rape cultivar, Brassica campestris L., adapted to Finnish climatic conditions. I. The use of glass capillary column gas chromatography in fatty acids analysis. Acta Pharm Fenn 88: 31–34Google Scholar
  31. Hirotani M, Asaka 1, Ino C, Furuya T, Shiro M (1987) Ganoredic acid derivatives and ergosta-4,7,22triene-3,6-dione from Ganoderma lucidum Phytochemistry 26: 2797–2803Google Scholar
  32. Huneck S (1967) (Inhaltsstoffe der Moose IV). Die Isolierung von Drimenol aus Bazznia trilobata (L.) Lindberg. Z Naturforsch 22B: 462–463Google Scholar
  33. Jennings W, Shibamoto T (1980) Qualitative composition of flavour and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York, 472 ppGoogle Scholar
  34. Kac D, Babbieri M, Falco AM, Seldes AM, Gros EG (1984) The major sterols from three species of Polyporaceae. Phytochemistry 23: 2686–2687CrossRefGoogle Scholar
  35. Kahlos K (1994) Inonotus obliquus (Chaga fungus): in vitro culture and the production of inotodiol, sterols and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 7. Medicinal and aromatic plants H. Springer, Berlin Heidelberg New York, pp 179–198Google Scholar
  36. Kahlos K (1996) Characterization of some lipid constituents in Gloeophyllum odoratum grown in vitro Mycol Res 100: 23–26Google Scholar
  37. Kahlos K, Hiltunen R (1987) Gas-chromatographic-mass-spectrometric identification of some sterols and lupanes from Inonotus obliquus. Acta Pharm Fenn 95: 85–89Google Scholar
  38. Kahlos K, Hiltunen R (1988) Gas chromatographic-mass spectrometric identification of some lanostanes from Inonotus obliquus. Acta Pharm Fenn 97: 45–49Google Scholar
  39. Kahlos K, Hiltunen R (1989) The occurrence of some sterols and triterpenes in Inonotus radiatus. Acta Pharm Fenn 98: 33–38Google Scholar
  40. Kahlos K, Hiltunen R, Schantz M (1984) 3ß-hydroxy-lanosta-8,24-dien-21-al, a new triterpene from Inonotus obliquus. Planta Med 50: 197–198Google Scholar
  41. Kahlos K, Kangas L, Hiltunen R (1987) Antitumour activity of some compounds and fractions from an n-hexane extract of Inonotus obliquas. Acta Pharm Fenn 96: 33–40Google Scholar
  42. Kahlos K, Kangas L, Hiltunen R (1989a) Ergosterol peroxide, an active compound from Inonotus radiatus. Planta Med 55: 389–390PubMedCrossRefGoogle Scholar
  43. Kahlos K, Hintsanen E, Seppänen-Laakso T, Hiltunen R (1989b) Lipid compounds of free species of cultivated Inonotus. Planta Med 55: 621Google Scholar
  44. Kahlos K, Rauhala K, Hiltunen R (1991) Investigation of some fungal metabolites from Gloeophyllum odoratum. Planta Med 57: A16Google Scholar
  45. Kahlos K, Laakso 1, Kiviranta J, Hiltunen R (1993) Characterization of some volatile constituents of natural and in vitro-cultivated Gloeophyllum odoratum fungus. Abstr. Int Symp on Essential oils, 21.7–24. 7, Technische Universität, Berlin, 55 ppGoogle Scholar
  46. Kahlos K, Kiviranta J, Hiltunen R (1994) Volatile constituents of wild and in vitro-cultivated Gloeophyllum odoratum. Phytochemistry 36: 917–922PubMedCrossRefGoogle Scholar
  47. Kemska K, Ludwiczak RS, Wrzeciono U (1962) Forschungen über die chemischen Bestandteile des Inonotus ohliquus VI. 3-hydroxy-A8•24-lanosta-2l-säure. Rocz Chem 3: 1453–1457Google Scholar
  48. Kendra DF, Christian D, Hadwiger LA (1989) Chitosan oligomers from Fusarium solani/pea interaction, chitinase b-glucanase digestion of sporelings from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol Mol Plant Pathol 35: 215–230CrossRefGoogle Scholar
  49. Koch-Heitzmann T, Schulze W (1984) Melissa officinalis L. Eine alte Arzneipflanze mit neuen therapeutischen Wirkungen. Apoth Ztg 124: 2137–2143Google Scholar
  50. Kocor M, Schmidt-Szalowska A (1972) Constituents de l’ académie polonaise des sciences. Ser Sci Chim 20: 515–520Google Scholar
  51. Lanza E, Ko Kh, Palmer JK (1976) Aroma production by cultures of Ceratocystis moniliformis. J Agric Food Chem 24: 1247–1250CrossRefGoogle Scholar
  52. Lawrie A, Mc Lean J, Watson J (1967) A new terpenoid acid from Lenzites trahea. J Chem Soc (C): 1776–1779Google Scholar
  53. Li HY, Sun NJ, Kashiwada Y, Sun L (1993) Anti-aids agent 9. Suberosol, a new C31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J Nat Prod 56: 1130–1133PubMedCrossRefGoogle Scholar
  54. Lindequist U, Lesnau A, Teuscher E, Pilgrim H (1989) Untersuchungen zur antiviralen Wirksamheit von Ergosterolperoxide. Pharmazie 44: 579–580PubMedGoogle Scholar
  55. Lindequist U, Teuscher E, Narbe G (1990) Neue Wirkstoffe aus Basidiomyceten. Z Phytother 11: 139–149Google Scholar
  56. Masada Y (1976) Analysis of essential oils by gas chromatography. John Wiley, New York 334 ppGoogle Scholar
  57. Mez C (1908) Der Hausschwamm und die übrigen holzzerstörenden Pilze der menschlichen Wohnungen Richard Linke, Dresden, 290 ppGoogle Scholar
  58. Murthy RS (1992) Nickel, catalysis, in them hydrogenation of perfumery chemicals: preparation and characterisation aspects. 3rd Malaysian Int Conf on Essential oils and flavour. TMIC-EOFC’92, Langkawi, Kedah Malaysia, 20–23 July, Abstract, p 20Google Scholar
  59. Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park, Baltimore, 690 ppGoogle Scholar
  60. Owen HR, Wengerd D, Miller AR (1991) Culture medium pH is influenced by carbonate source gelling activated charcoal, and medium storage method. Plant Cell Rep 10: 583–586CrossRefGoogle Scholar
  61. Pohjola H (1993) A headspace chromatographic study on the variation of neddle volatile terpenes in scots pine (Pinus sylvestris L.) Academic dissertation. University of Helsinki, HelsinkiGoogle Scholar
  62. Ramirez HE, Cortes MM, Agosin E (1993) Bioconversion of drimenol into 3ß-hydroxydrimanes by Aspergillus niger. Effect of culture additives. J Nat Prod 56: 762–764Google Scholar
  63. Rumbold C (1908) Beitnäge zun Kenntnis der Biologie holzzerstörender Pilze. Z Forst Landwirtschaftwiss 6: 81–140Google Scholar
  64. Rypaczek V (1966) Biologie holzzerstörender Pilze Fischer, Leipzig, 211 ppGoogle Scholar
  65. Ryvärden L (1978) The Polyporaceae of North Europe, Inonotus-Tyromyces Fungiflora, vol 2. Universitetslagets Tryckningssentral, Oslo, 507 ppGoogle Scholar
  66. Sastry KSM, Agraval S, Manavalan R, Singh P, Atal CK (1980) Studies on Osmoporus odorata (Wulf. ex Fr.). Rose-like aroma produced by fermentation. Indian J Exp Biol 18: 1471–1473Google Scholar
  67. Sheikh YM, Djerassi C (1974) Steroids from sponges. Tetrahedron 30: 4095–4105CrossRefGoogle Scholar
  68. Sheth K, Catalfomo P, Sciuchetti LA (1967) Isolation and identification of eburicoic acid from Fomes pinicola. J Pharm Sci 12: 1657–1658Google Scholar
  69. Stössel P, Leuba JL (1984) Effect of chitosan, chitin and some amino sugars on growth of various soilborne phytopathogenic fungi. Phytopath Z 111: 82–90CrossRefGoogle Scholar
  70. Turner WB (1971) Fungal metabolites. Academic Press, London, 436 ppGoogle Scholar
  71. Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, London, 631 ppGoogle Scholar
  72. Villanueva VR (1971) Triterpenes et sterols de Lenzites trahea. Phytochemistry 10: 427–430CrossRefGoogle Scholar
  73. Villanueva VR, Barbier M, Lederder E (1967) Sur la biosynthèse d’acids triterpeniques par Polyporus sulfureus. Bull Soc Chim Biol 49: 389–393PubMedGoogle Scholar
  74. Weete JD (1974) Fungal lipid biochemistry. Plenum Press, New York, 393 ppCrossRefGoogle Scholar
  75. Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New York, 388 ppCrossRefGoogle Scholar
  76. Yasukawa K, Aoki T, Takido M, Ikewa T, Saito H, Matsuzawa T (1994) Inhibitory effects of ergosterol isolated from edible mushroom Hypsizigus marmoreus on TPA-induced inflammatory ear oedema and tumour promotion in mice. Phytother Res 8: 10–13CrossRefGoogle Scholar
  77. Yokoyama A, Natori A, Aoshima K (1975) Distribution of tetracyclic triterpenoids of lanostane group and sterols in the higher fungi especially of the Polyporaceae and related families. Phytochemistry 14: 487–497CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • K. Kahlos
    • 1
  1. 1.Department of Pharmacy, Biocenter 2University of HelsinkiHelsinkiFinland

Personalised recommendations