Skip to main content

Phaseolus Species: In Vitro Culture and the Accumulation of Isoflavone Phytoalexins and Other Secondary Metabolites

  • Chapter
Medicinal and Aromatic Plants VIII

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 33))

  • 378 Accesses

Abstract

The Phaseolae (family Leguminosae) are grown agronomically as a grain legume for both human and animal nutrition. Of the four species, Phaseolus acutifolius (tepary bean), P. coccineus (scarlet runner bean), P. lunatus (lima and butter bean), and P. vulgaris (known variously as common, field, green, snap, wax or French bean) are grown extensively (Hall 1991; Langer and Hill 1991). Related species, such as P. angularis and P. aureus have recently been reclassified as belonging to the genus Vigna and will not be considered further in this Chapter. All of the Phaseolae originate from southern or central America and are grown for their dried seeds or fleshy pods for human consumption. After harvesting, the vines may also be used as fresh or silaged cattle feed. Of all the bean species, P. vulgaris is the most important agronomic crop, being a major dietary component in Latin America and Africa. P. vulgaris was first domesticated in 5000 B.C. in central America and was distributed to the rest of the world by the Spanish in the 16th century. The major world producer of P. vulgaris is the USA where after harvest with typical yields of 1.5 t/ha, it is either dried or canned as baked beans (Langer and Hill 1991). Similarly, P. lunatus is also grown for its beans with its cultivation largely confined to the USA with yields as high as 1.7 t/ha (Langer and Hill 1991). The beans of P. acutifolius are used in soups both in central America and Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adesanya SA, O’Neill MJ, Roberts MF (1985) Isoflavonoids from Phaseolus coccineus. Phytochemistry 24: 2699–2702

    Article  CAS  Google Scholar 

  • Akihisa T, Yokota T, Takahashi N, Tamura T, Matsumoto T (1989) 25-methylgramisterol and other 4-a-methylsterols from Phaseolus vulgaris seeds. Phytochemistry 28: 1219–1224

    Article  CAS  Google Scholar 

  • Angelini RR, Genga A, Allavena A (1989) Tissue culture of bean (Phaseolus coccineus L.) and their application to breeding. Acta Hortic 280: 99–104

    Google Scholar 

  • Bailey JA, Berthier M (1981) Phytoalexin accumulation in chloroform-treated cotyledons of Phaseolus vulgaris. Phytochemistry 20: 187–188

    Article  CAS  Google Scholar 

  • Bailey JA, Burden RS (1973) Biochemical changes and phytoalexin accumulation in Phaseolus vulgaris following cellular browning caused by tobacco necrosis virus. Physiol Plant Pathol 3: 171–177

    Article  CAS  Google Scholar 

  • Bailey JA, Rowell PM, Arnold GM (1980) The temporal relationship between host cell death, phytoalexin accumulation and fungal inhibition during hypersensitive reactions of Phaseolus vulgaris to Colletotrichum lindemuthianum. Physiol Plant Pathol 17: 329–339

    CAS  Google Scholar 

  • Bajaj YPS, Saettler AW (1970) Effect of halo toxin-containing filtrates of Psuedomonas phaseolicola on the growth of bean callus tissue. Phytopathology 60: 1065–1067

    Article  CAS  Google Scholar 

  • Bajaj YPS, Saettler AW, Adams MW (1970) Gamma irradiation studies on seeds, seedlings and callus tissue cultures of Phaseolus vulgaris L. Radiat Bot 10: 119–124

    Article  Google Scholar 

  • Bajaj YPS, Rasmussen HP, Adams MW (1971) Electron-microprobe analysis of isolated plant cells. J Exp Bot 22: 749–752

    Article  Google Scholar 

  • Beggs CJ, Stolzer-Jehle A, Wellmann E (1985) Isoflavonoid formation as an indicator of UV stress in bean (Phaseolus vulgaris L.) leaves. Plant Physiol 79: 630–634

    Article  PubMed  CAS  Google Scholar 

  • Biggs DR, Welle R, Grisebach H (1990) Intracellular localisation of prenyltransferases of isoflavonoid phytoalexin biosynthesis in bean and soybean. Planta 181: 244–248

    Article  CAS  Google Scholar 

  • Bolwell GP, Robbins MP, Dixon RA (1985) Metabolic changes in elicitor-treated bean cells: enzymic responses associated with rapid changes in cell wall components. Eur J Biochem 148: 571–578

    Article  PubMed  CAS  Google Scholar 

  • Crocomo OJ, Sharp WR, Peters JE (1976) Plantlet morphogenesis and the control of callus growth and root induction of Phaseolus vulgaris with the addition of a bean seed extract. Z Pflanzenphysiol 78: 456–460

    Google Scholar 

  • Cruickshank IAM, Smith MM (1988) Pterocarpan accumulation in pod infection droplets and pod tissues of Phaseolus vulgaris inoculated with Colletotrichum lindemuthianum. J Phytopathol 122: 307–316

    Article  CAS  Google Scholar 

  • Curl CL, Price KR, Fenwick GR (1988) Isolation and structural elucidation of a new saponin (soyasaponin V) from haricot bean (Phaseolus vulgaris L.). J Sci Food Agric 43: 101–107

    Article  CAS  Google Scholar 

  • Deshpande SS, Cheryan M (1983) Changes in phytic acid, tannins, and trypsin inhibitory activity on soaking of dry beans (Phaseolus vulgaris L.). Nutr Rep Int 27: 371–377

    CAS  Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK, Cornforth DP (1982) Effects of dehulling on phytic acid, polyphenols and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). J Food Sci 47: 1846–1850

    Article  CAS  Google Scholar 

  • Dewick PM (1988) Isoflavonoids. In: Harborne JB (ed) The flavonoids. Chapman and Hall, London, pp 125–209

    Google Scholar 

  • Dewick PM, Steele MJ (1982) Biosynthesis of the phytoalexin phaseollin in Phaseolus vulgaris. Phytochemistry 21: 1599–1603

    CAS  Google Scholar 

  • Dixon RA (1985) Isolation and maintenance of callus and cell suspension cultures. In: Dixon RA (ed) Plant cell culture a practical approach. IRL Press, Oxford, pp 1–20

    Google Scholar 

  • Dixon RA (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291

    Article  CAS  Google Scholar 

  • Dixon RA, Bendall DS (1978) Changes in phenolic compounds associated with phaseollin production in cell suspension cultures of Phaseolus vulgaris. Physiol Plant Pathol 13: 283–294

    Article  CAS  Google Scholar 

  • Dixon RA, Fuller KW (1977) Effects of synthetic auxin levels on phaseollin production and phenylalanine ammonia-lyase (PAL) activity in tissue cultures of Phaseoleus vulgaris L. Physiol Plant Pathol 9: 299–312

    Article  Google Scholar 

  • Dixon RA, Fuller KW (1978) Effects of growth substances on non-induced and Botrytis cinerea culture filtrate-induced phaseollin production in Phaseolus vulgaris cell suspension cultures. Physiol Plant Pathol 12: 279–288

    Article  CAS  Google Scholar 

  • Dixon RA, Dey PM, Lawton MA, Lamb CJ (1983) Phytoalexin induction in French bean. Plant Physiol 71: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Choudhary AD, Edwards R, Harrison MJ, Lamb CJ, Lawton MA, Mavandad M, Stermer BA, Yu L (1990) Elicitors and defence gene activation in cultured cells. In: Ranjeva R, Boudet AM (eds) Signal perception and transduction in higher plants. Springer, Berlin Heidelberg, NATO ASI Ser H47. New York, pp 283–296

    Chapter  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York

    Book  Google Scholar 

  • Edwards R, Mavandad M, Dixon RA (1990) Metabolic fate of cinnamic acid in elicitor treated cell suspension cultures of Phaseolus vulgaris. Phytochemistry 29: 1867–1873

    Article  CAS  Google Scholar 

  • Edwards R, Blount JW, Dixon RA (1991) Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta 184: 403–409

    Article  CAS  Google Scholar 

  • Ellis JS, Jennings AC, Edwards LA, Mavandad M, Lamb CJ, Dixon RA (1989) Defence gene expression in elicitor-treated cell suspension cultures of French bean cv. Immuna. Plant Cell Rep 8: 504–507

    Article  Google Scholar 

  • Fenwick DE, Oakenfull D (1983) Saponin content of food plants and some prepared foods. J Sci Food Agric 34: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Franklin CI, Trieu TN, Gonzales RA, Dixon RA (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tissue Organ Cult 24: 199–206

    Article  Google Scholar 

  • Franklin CI, Trieu TN, Cassidy BG, Dixon RA, Nelson RS (1993) Genetic transformation of green bean callus via Agrobacterium mediated transfer. Plant Cell Rep 12: 74–79

    Article  CAS  Google Scholar 

  • Frehner M, Scalet M, Conn EE (1990) Pattern of the cyanide potential in developing fruits. Implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides (Linum usitatissimum, Prunus amygdalus). Plant Physiol 94: 28–34

    Article  PubMed  CAS  Google Scholar 

  • Gantet P, Brangeon J, Grisvard J, Dron M (1993) Anp, a genetic locus controlling organ-specific accumulation of anthocyanins in Phaseolus vulgaris L. Planta 190: 459–467

    Article  CAS  Google Scholar 

  • Garcia-Arenal F, Fraile A, Sagasta EM (1978) The multiple phytoalexin response of bean (Phaseolus vulgaris) to infection by Botrytis cinerea. Physiol Plant Pathol 13: 151–156

    Article  CAS  Google Scholar 

  • Genga A, Allavena A (1991) Factors affecting morphogenesis from immature cotyledons of Phaseolus coccineus L. Plant Cell Tissue Organ Cult 27: 189–196

    Article  CAS  Google Scholar 

  • Genga A, Ceriotti A, Bollini R, Allavena A (1990) Towards a genetic transformation of bean by Agrobacterium tumefaciens. Acta Hortic 280: 527–536

    Google Scholar 

  • Genga A, Ceriotti A, Bollini R, Bernacchia G, Allavena A (1991) Transient gene expression in bean tissues by high velocity microprojectile bombardment. J Genet Breed 45: 129–134

    Google Scholar 

  • Gnanamanickam SN, Patil SS (1977) Accumulation of antibacterial isoflavonoids in hypersensitively responding bean leaf tissues inoculated with Psuedomonas phaseolicola. Physiol Plant Pathol 10: 159–168

    Article  CAS  Google Scholar 

  • Goossens JF, Van Laere AJ (1983) High-performance liquid chromatography of isoflavonoid phytoalexins in French bean (Phaseolus vulgaris). J Chromatogr 267: 439–442

    Article  CAS  Google Scholar 

  • Goossens JF, Vendrig JC (1982) Effects of abscisic acid, cytokinins and light on isoflavonoid phytoalexin accumulation in Phaseolus vulgaris L. Planta 154: 441–446

    Article  CAS  Google Scholar 

  • Goossens JF, Stabel A, Vendrig JC (1987) Relationships between keivitone and phaseollin accumulation in different tissues of Phaseolus vulgaris in response to treatment with mercuric chloride, a fungal cell wall elicitor and abscisic acid. Physiol Mol Plant Pathol 30: 1–12

    Article  CAS  Google Scholar 

  • Hall R (1991) Compendium of bean diseases. APS Press, St Paul

    Google Scholar 

  • Hamdan MAMS, Dixon RA (1986) Differential biochemical effects of elicitor preparations from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 28: 329–344

    Article  CAS  Google Scholar 

  • Harborne JB (1971) Distribution of flavonoids in the leguminosae. In: Harborne JB, Boulter D, Turner BL (eds) Chemotaxonomy of the Leguminosae. Academic Press, London, pp 31–71

    Google Scholar 

  • Hargreaves JA (1981) Accumulation of phytoalexins of French bean (Phaseolus vulgaris L.) following treatment with triton (T-octylphenol polyethoxyethanol) surfactants. New Phytol 87: 733–741

    Article  CAS  Google Scholar 

  • Hargreaves JA, Bailey JA (1978) Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol Plant Pathol 13: 89–100

    Article  CAS  Google Scholar 

  • Hargreaves JA, Selby C (1978) Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to an extract of bean hypocotyls. Phytochemistry 17: 1099–1102

    Article  CAS  Google Scholar 

  • Hess SL, Hadwiger LA, Schwochau ME (1971) Studies on the biosynthesis of phaseollin in excised pods of Phaseolus vulgaris. Phytopathology 61: 79–82

    Article  CAS  Google Scholar 

  • Hughes RK, Dickerson AG (1990) Auxin regulation of the response of Phaseolus vulgaris to a fungal elicitor. Plant Cell Physiol 31: 667–675

    CAS  Google Scholar 

  • Hungria M, Phillips DA (1993) Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol Plant Microb Interact 6: 418–422

    Article  CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991a) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97: 759–764

    Article  PubMed  CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991b) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97: 751–758

    Article  PubMed  CAS  Google Scholar 

  • Hungria M, Johnstone AWB, Phillips DA (1992) Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nod-D-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant Microb Interact 5: 199–203

    Article  CAS  Google Scholar 

  • Ingham JL (1982) Phytoalexins from the Leguminosae. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Blackie, Glasgow, pp 21–80

    Google Scholar 

  • Ingham JL (1990) Systematic aspects of phytoalexin formation within the tribe Phaseolae of the Leguminosae (subfamily Papilionoideae). Biochem Sys Ecol 18: 329–343

    Article  CAS  Google Scholar 

  • Jain DC, Thakur RS, Bajpai A, Sood AR (1988) A soyasapogenol -β-glucoside from the seeds of Phaseolus vulgaris. Phytochemistry 27: 1216–1217

    Article  CAS  Google Scholar 

  • Jakobek JL, Lindgren PB (1993) Generalized induction of defence responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5: 49–56

    PubMed  CAS  Google Scholar 

  • Johal GS, Rahe JE (1990) Role of phytoalexins in the suppression of resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum by glyphosate. Can J Plant Pathol 12: 225–348

    Article  CAS  Google Scholar 

  • Ki Kim S, Akihisa T, Tamura T, Matsumoto T, Yokota T, Takahashi N (1988) 24-Methylene-25-methylcholesterol in Phaseolus vulgaris seed: structural relation to brassinosteroids. Phytochemistry 27: 629–631

    Google Scholar 

  • Komiyama Y, Harakawa M, Tezuka Y, Tsuji M (1986) Cyanogenic glucosides in butter bean (Phaseolus lunatus L.). Nippon Shok Kogyo Gak 33: 67–69

    Article  CAS  Google Scholar 

  • Kumar AS, Gamborg OL, Nabors MW (1988) Regenaration from long-term cell suspension cultures of tepary bean (Phaseolus acutifolius). Plant Cell Rep 7: 322–325

    Article  CAS  Google Scholar 

  • Langer RHM, Hill GD (eds) (1991) Agricultural plants. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Leon P, Plackaert F, Walbot V (1991) Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Physiol 95: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Longland AC, Slusarenko AJ, Friend J (1987) Arachadonic and linoleic acids elicit isoflavonoid phytoalexin accumulation in Phaseolus vulgaris (French bean). J Phytopathol 120: 288–297

    Article  Google Scholar 

  • Mariotti D, Fontana GS, Santini L (1989) Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. J Genet Breed 43: 77–82

    Google Scholar 

  • Martins IS, Sondahl MR (1984) Early stages of somatic embryo differentiation from callus cells of bean (Phaseolus vulgaris L.). J Plant Physiol 117: 97–103

    Article  PubMed  CAS  Google Scholar 

  • McClean P, Grafton KF (1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci 60: 117–122

    Article  Google Scholar 

  • McClean P, Chee P, Held B, Simental J, Drong RF, Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: transformation of cotyledonary and hypocotyl tissues. Plant Cell Tissue Organ Cult 24: 131–138

    Article  Google Scholar 

  • Nozzolillo C, McNeill J (1984) Anthocyanin pigmentation in seedlings of selected species of Phaseolus and Vigna (Fabaceae). Can J Bot 63: 1066–1071

    Article  Google Scholar 

  • Ologhobo AD, Fetuga BL (1982) Polyphenols, phytic acid and other phosphorus compounds of lima bean (Phaseolus lunatus). Nutr Rep Int 26: 605–611

    CAS  Google Scholar 

  • O’Neill MJ, Adesanya SA, Roberts MF (1984) Isojagol, a coumestan from Phaseolus coccineus. Phytochemistry 23: 2704–2705

    Article  Google Scholar 

  • O’Neill MJ, Adesanya SA, Roberts MF, Pantry IR (1986) Inducible isoflavonoids from the lima bean, Phaseolus lunatus. Phytochemistry 25: 1315–1322

    Article  Google Scholar 

  • Perrin DR, Biggs DR, Cruickshank IAM (1974) Phaseollidin, a phytoalexin from Phaseolus vulgaris: isolation, physiochemical properties and antifungal activity. Aust J Chem 27: 1607–1611

    Article  CAS  Google Scholar 

  • Rahe JE (1973) Occurrence and levels of the phytoalexin phaseollin in relation to delimitation at sites of injection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Can J Bot 51: 2423–2430

    Article  CAS  Google Scholar 

  • Rahe JE, Arnold RM (1975) Injury-related phaseollin accumulation in Phaseolus vulgaris and its implications with regard to the sepcificity of host-parasite interactions. Can J Bot 53: 921–928

    Article  Google Scholar 

  • Robbins MP, Bolwell GP, Dixon RA (1985) Metabolic changes in elicitor-treated bean cells: selectivity of enzyme induction in relation to phytoalexin accumulation. Eur J Biochem 148: 563–569

    Article  PubMed  CAS  Google Scholar 

  • Rowell PM, Bailey JA (1982) Influence of light and excision of organs on accumulation of phytoalexins in virus-infected hypocotyls of bean (Phaseolus vulgaris). Physiol Plant Pathol 21: 75–84

    Article  CAS  Google Scholar 

  • Saunders JW, Hosfielf GL, Levi A (1987) Morphogenic effects of 2,4-dichlorophenoxyacetic acid on Pinto bean (Phaseolus vulgaris L.) leaf explants in vitro. Plant Cell Rep 6: 46–49

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204

    Article  CAS  Google Scholar 

  • Smith DA, Van Etten HD, Bateman DF (1975) Accumulation of phytoalexins of Phaseolus vulgaris hypocotyls following infection by Rhizoctonia solani. Physiol Plant Pathol 5: 51–64

    Article  CAS  Google Scholar 

  • Srisuma N, Hammerschmidt R, Uebersax MA, Ruengsakulrach S, Bennink MR, Hosfield GL (1989): Storage induced changes of phenolic acids and the development of hard-to-cook in dry beans (Phaseolus vulgaris, var. Seafarer). J Food Sci 54: 311–318

    Article  CAS  Google Scholar 

  • Stossel P, Magnolato D (1983) Phytoalexins in Phaseolus vulgaris and Glycine max induced by chemical treatment, microbial contamination and fungal infection. Experientia 39: 153–154

    Article  Google Scholar 

  • Tepper CS, Albert FG, Anderson AJ (1989) Differential mRNA accumulation in three cultivars of bean in reponse to elicitors from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 34: 85–98

    Article  CAS  Google Scholar 

  • Veliky IA (1972) Synthesis of carboline alkaloids by plant cell culture. Phytochemistry 11: 1405–1406

    Article  CAS  Google Scholar 

  • Whitehead IM, Dey PM, Dixon RA (1982) Differential patterns of phytoalexin accumulation and enzyme induction in wounded and elicitor-treated tissues of Phaseolus vulgaris. Planta 154: 156–164

    Article  CAS  Google Scholar 

  • Williams CA, Harborne JB (1989) Isoflavonoids. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, vol 1. Plant phenolics. Academic Press, London, pp 422–449

    Google Scholar 

  • Woodward MD (1980) Phaseollin formation and metabolism in Phaseolus vulgaris. Phytochemistry 19: 921–927

    Article  CAS  Google Scholar 

  • Yamishita M, Kinjo J, Ito Y, Kajimoto T, Marubayashi N, Ueda I, Nohara T (1990) A novel diterpene glucoside from Phaseolus coccineus. Chem Pharm Bull 38: 2905–2906

    Article  Google Scholar 

  • Yokota T, Koba S, Ki Kim S, Takatsuto S, Ikekawa N, Sakakibara M, Okada K, Mori K, Takahashi N (1987) Diverse structural variations in the brassinosteroids in Phaseolus vulgaris seed. Agric Biol Chem 51: 1625–1631

    Article  CAS  Google Scholar 

  • Yokota T, Watanabe S, Ogina Y, Yamaguchi I, Takahashi N (1990) Radioimmunoassay for brassinosteroids and its uses for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9: 151–159

    Article  CAS  Google Scholar 

  • Zavala G, Cano H, Soriano E (1989) Phytoalexin accumulation in Phaseolus vulgaris as response to elicitor treatment to different bean tissues. Biol Plant (Praha) 31: 221–226

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edwards, R., Parry, A.D. (1995). Phaseolus Species: In Vitro Culture and the Accumulation of Isoflavone Phytoalexins and Other Secondary Metabolites. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants VIII. Biotechnology in Agriculture and Forestry, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08612-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08612-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08201-6

  • Online ISBN: 978-3-662-08612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics