Skip to main content

Advertisement

SpringerLink
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Measurement and Control of Charged Particle Beams pp 263–300Cite as

  1. Home
  2. Measurement and Control of Charged Particle Beams
  3. Chapter
Cooling

Cooling

  • Michiko G. Minty3 &
  • Frank Zimmermann4 
  • Chapter
  • Open Access
  • First Online: 01 January 2015
  • 3609 Accesses

Part of the Particle Acceleration and Detection book series (PARTICLE)

  • This chapter has been made Open Access under a CC BY 4.0 license. For details on rights and licenses please read the Correction https://doi.org/10.1007/978-3-662-08581-3_13

Abstract

Many applications of particle accelerators require beam cooling, which refers to a reduction of the beam phase space volume or an increase in the beam density via dissipative forces. In electron and positron storage rings cooling naturally occurs due to synchrotron radiation, and special synchrotron-radiation damping rings for the production of low-emittance beams are an integral part of electron-positron linear colliders. For other types of particles different cooling techniques are available. Electron cooling and stochastic cooling of hadron beams are used to accumulate beams of rare particles (such as antiprotons), to combat emittance growth (e.g., due to scattering on an internal target), or to produce beams of high quality for certain experiments. Laser cooling is employed to cool ion beams down to extremely small temperatures. Here the laser is used to induce transitions between the ion electronic states and the cooling exploits the Dopper frequency shift. Electron beams of unprecedentedly small emittance may be obtained by a different type of laser cooling, where the laser beam acts like a wiggler magnet. Finally, designs of a future muon collider rely on the principle of ionization cooling. Reference [1] gives a brief review of the principal ideas and the history of beam cooling in storage rings; a theoretical dicussion and a few practical examples can be found in [2].

Keywords

  • Storage Ring
  • Beta Function
  • Laser Cool
  • Electron Cool
  • Momentum Spread

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. D. Möhl: Physica Scripta T22, 21 (1998)

    Google Scholar 

  2. D.V. Pestrikov: Beam Cooling. In: Beam Measurements. Proc. US-CERNJapan-Russian School on Beam Measurement, Montreux, Switzerland, 1998, ed. by S.I. Kurokawa, S.Y. Lee, E. Perevedentsev, S. Turner (World Scientific, 2000 )

    Google Scholar 

  3. G.I. Budker: Atomnaja Energia 22, 346 (1967)

    Google Scholar 

  4. J. Bosser: Electron Cooling. In: Proc. 4th Advanced Accelerator Physics Course, CERN Accelerator School, CERN 92–01, 1992

    Google Scholar 

  5. S.P. Moller: Cooling Techniques. In: Proc. CERN Acc. School, Jyvaeskylae 1992, CERN-94–01, 1994

    Google Scholar 

  6. Ya.S. Derbenev, A.N. Skrinsky: In: Proc. of the 10th Internat. Conf. on High Energy Accel., Serpukhov, 1977 v. 1, p. 516

    Google Scholar 

  7. A. Chao: Physics of Collective Beam Instabilities in High Energy Accelerators ( Wiley, New York 1993 )

    Google Scholar 

  8. J. Bosser, C. Carli, M. Chanel, L. Marie, D. Möhl, G. Tranquille: Nucl. Instr. Meth. A 441, 60 (2000)

    ADS  Google Scholar 

  9. J. Bosser, C. Carli, M. Chanel, C. Hill, A. Lombardi, R. Maccaferri, S. Maury, D. Möhl, G. Molinari, S. Rossi, E. Tanke, G. Tranquille, M. Vretenar: Part. Acc. 63, 171 (1999)

    Google Scholar 

  10. G. Tranquille: Optimum Parameters for Electron Cooling. Presented at Beam Cooling and Related Topics Workshop, 13–18 May, 2001, Bad Honnef. CERN/PS 2001–056 (BD) (2001)

    Google Scholar 

  11. C. Rubbia: In: Proc. of the Workshop on Producing High Luminosity High Energy Proton-Antiproton Collisions, Berkeley, LBL-7574, 1978, p. 98

    Google Scholar 

  12. S.Y. Lee, P. Colestock, K.Y. Ng: Electron Cooling in High Energy Colliders. FERMILAB-FN-657 (1997)

    Google Scholar 

  13. I. Ben-Zvi, J. Kewisch, J. Murphy, S. Peggs: Nucl. Instr. Meth. A 463, 94 (2001)

    ADS  Google Scholar 

  14. I. Koop, V. Parkhomchuk, V. Reva et al.: In: Proc. IEEE PAC 2001, Chicago, 2001 ( IEEE, Piscataway 2001 )

    Google Scholar 

  15. D. Möhl: Nucl. Instr. Meth. A 391, 164 (1997)

    ADS  Google Scholar 

  16. D. Möhl: Cooling of Particle Beams In: Advances of Accelerator Physics and Technologies, Adv. Ser. Direct. High Energy Phys. 12, ed. by H. Schopper ( World Scientific, Singapore, 1993 ) p. 359

    Google Scholar 

  17. F. Sacherer: Stochastic Cooling Theory. CERN-IST-TH/78–11. Talk given at the ISR seminar on 24th April 1978

    Google Scholar 

  18. H. Herr, D. Möhl: Bunched Beam Stochastic Cooling. In: Proc. Workshop on Cooling High Energy Beams, Madison 1978, CERN-PS-DI Note 79–3 and CERN-EP Note 79–34

    Google Scholar 

  19. A.A. Mikhailichenko, M.S. Zolotorev: Phys. Rev. Lett. 71, 4146 (1993)

    ADS  Google Scholar 

  20. M.S. Zolotorev, A.A. Zholents: Phys. Rev. E 50, 3087 (1994)

    ADS  Google Scholar 

  21. D. Boussard: Evaluation of Transverse Emittance Growth from Damper Noise in the Collider. CERN Internal Report SL/Note 92–79 (RFS)

    Google Scholar 

  22. D. Möhl: Stochastic Cooling. In: Proc. CERN Accelerator School, Oxford, CERN 87–03, 1987

    Google Scholar 

  23. P.J. Channel: J. Appl. Phys. 52, 3791 (1981)

    ADS  Google Scholar 

  24. S. Schröder, R. Klein, N. Boos et al.: Phys. Rev. Lett. 64, 2901 (1990)

    ADS  Google Scholar 

  25. J.S. Hangst, J.S. Nielsen, O. Poulsen et al.: Phys. Rev. Lett. 67, 1238 (1995)

    ADS  Google Scholar 

  26. J.S. Hangst, J.S. Nielsen, O. Poulsen, P. Shi, J.P. Schiffer Phys. Rev. Lett. 74, 4432 (1995)

    ADS  Google Scholar 

  27. T. Kihara, H. Okamoto, Y. Iwashita, K. Oide, G. Lamanna, J. Wei: Study of Three-Dimensional Laser Cooling Method Based on Resonant Linear Coupling. KEK Preprint 98–158 (1998)

    Google Scholar 

  28. H. Okamoto, A.M. Sessler, D. Möhl: Phys. Rev. Lett. 72, 3977 (1994)

    ADS  Google Scholar 

  29. H. Okamoto: Phys. Rev. E 50, 4982 (1994)

    ADS  Google Scholar 

  30. V. Telnov: Laser Cooling of Electron Beams for Linear Colliders. SLAC-PUB7337 (1996)

    Google Scholar 

  31. Z. Huang, R.D. Ruth: Phys. Rev. Lett. 80, 976 (1998)

    ADS  Google Scholar 

  32. K.-J. Kim, S. Chattopadhyay, C.V. Shank: Nucl. Instr. Meth. in Phys. Res. A 341, 351 (1994)

    Google Scholar 

  33. A. Hofmann: SSRL ACD-Note 38 (1986)

    Google Scholar 

  34. J. Urakawa: private communication (2001)

    Google Scholar 

  35. A. Tsunemi, A. Endo, I. Pogorelsky et al.: ‘Ultra-Bright X-Ray Generation using Inverse Compton Scattering of Picosecond CO2 Laser Pulses’. In: Proc. IEEE PAC 99, New York, 1999 ( IEEE, Piscataway 1999 ) p. 2552

    Google Scholar 

  36. E.N. Dementev, N.S. Dikanski, A.S. Medvedko, V.V. Parkhomchuk, D.V. Pestrikov: Soy. Phys. Tech. Phys. 25, 1001 (1980)

    Google Scholar 

  37. N.S. Dikanski, D.V. Pestrikov. In: Proc. of Workshop on Electron Cooling and Related Applications, Karlsruhe 1984, ed. by H. Poth, KfK 3846 (1984)

    Google Scholar 

  38. A. Rahman, J P Schiffer Phys. Rev. Lett. 57 (9), 1133 (1986)

    ADS  Google Scholar 

  39. A. Rahman, J.P. Schiffer: Z. Phys. A 331, 71 (1988)

    ADS  Google Scholar 

  40. J. Wei, X.-P. Li, A.M. Sessler: Phys. Rev. Lett. 73, 3089 (1994)

    ADS  Google Scholar 

  41. J. Wei, H. Okamoto, A.M. Sessler: Phys. Rev. Lett. 80, 2660 (1998)

    Google Scholar 

  42. X.-P. Li, A.M. Sessler, J. Wei: Crystalline Beam in a Storage Ring: How Long Can it Last? In: Proc. EPAC 94, London, 1994 ( World Scientific, Singapore 1994 ) p. 1379

    Google Scholar 

  43. R.W. Hasse, M. Steck: Ordered Ion Beams. In: Proc. EPAC 2000, Vienna, Austria, 1999 ( European Phys. Soc., Geneva 2000 ) p. 274

    Google Scholar 

  44. G. Stupakov: Echo Effect in Hadron Colliders. SSCL-579 (1992)

    Google Scholar 

  45. This picture arose in a discussion with K.-J. Kim during the 1999 US accelerator school in Argonne

    Google Scholar 

  46. L.K. Spentzouris, P. Colestock: Coherent Nonlinear Longitudinal Phenomena in Unbunched Sycnhrotron Beams In: Proc. IEEE PAC 97, Vancouver, 1997 ( IEEE, Piscataway 1998 )

    Google Scholar 

  47. O.S. Brüning: On the Possibility of Measuring Longitudinal Echos in the SPS. CERN SL/95–83 (1995)

    Google Scholar 

  48. I.V. Agapov, G.H. Hoffstaetter, E. Vogel: Bunched Beam Echoes in the HERA Proton Ring. In: Proc. EPAC 2002, Paris, 2002 ( European Phys. Soc., Geneva 2002 )

    Google Scholar 

  49. G. Arduini, F. Ruggiero, F. Zimmermann. M-P. Zorzano: Transverse Beam Echo Measurements on a Single Proton Bunch at the SPS. CERN SL-Note2000–048 MD (2000)

    Google Scholar 

  50. C. Ankenbrandt, M. Atac, B. Autin et al.: Phys. Rev. S.T. Accel. Beams 2, 081001 (1999)

    ADS  Google Scholar 

  51. R. Palmer, A. Tollestrup, A. Sessler et al. (The µ+µ- Collider Collaboration): µ+µ- Collider. A Feasibility Study’. Submitted to the APS Summer Study, Snowmass 1996, on ‘New Directions for High-Energy Physics’. BNL-52503 (1996)

    Google Scholar 

  52. The MUCOOL Collaboration (C. Ankenbrandt et al.): Ionization Cooling Research and Development Program for a High Luminosity Muon Collider. FERMILAB-P-0904 (1998).

    Google Scholar 

  53. D. Neuffer: Part. Acc. 14, 75 (1983)

    Google Scholar 

  54. R.C. Fernow, J.C. Gallardo: Phys. Rev. E 52, 1039 (1995)

    ADS  Google Scholar 

  55. M.J. Syphers, D.A. Edwards: An Introduction to the Physics of High Energy Accelerators( Wiley, New York 1993 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. DESY - MDE, Notkestrasse 85, 22607, Hamburg, Germany

    Dr. Michiko G. Minty

  2. AB Division, ABP Group, CERN, 1211, Geneva 23, Switzerland

    Dr. Frank Zimmermann

Authors
  1. Dr. Michiko G. Minty
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Dr. Frank Zimmermann
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Open Access This chapter was originally published with exclusive rights reserved by the Publisher in 2003 and was licensed as an open access publication in November 2019 under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license if changes were made.

The images or other third party material in this chapter may be included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material or in the Correction Note appended to the chapter. For details on rights and licenses please read the Correction https://doi.org/10.1007/978-3-662-08581-3_13. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2003 The Author(s)

About this chapter

Cite this chapter

Minty, M.G., Zimmermann, F. (2003). Cooling. In: Measurement and Control of Charged Particle Beams. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08581-3_11

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-08581-3_11

  • Published: 27 August 2015

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07914-6

  • Online ISBN: 978-3-662-08581-3

  • eBook Packages: Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2023 Springer Nature