Skip to main content

Bildgebende Verfahren: Früherkennung und Diagnostik

  • Chapter
Management des MAMMAKARZINOMS

Part of the book series: Onkologie ((ONKAKTUELL))

  • 75 Accesses

Zusammenfassung

Die Tatsache, dass Mammakarzinome mit Hilfe der Screening-Mammographie früher diagnostiziert werden können und dadurch auch prinzipiell die Überlebensrate verbessert werden kann (erwiesenermaßen diejenige der Patientinnen über 50 Jahre), ist allgemein akzeptiert (Andersson et al. 1988; Baker 1982; Roberts et al. 1990; Rodes et al. 1986; Rutquist et al. 1990; Seidman et al. 1987; Shapiro et al. 1982; Tabar et al. 1985,1992; Verbeek et al. 1984). Die Hauptziele der Mammadiagnostik sind vor allem die Früherkennung des Mammakarzinoms und die Differenzierung von gutartigen Läsionen. Bislang gilt die Mammographie als das einzige zuverlässige Screening-Verfahren in diesem Bereich. Für die weitere Differenzierung von mammographisch oder klinisch suspekten Veränderungen werden üblicherweise der Ultraschall und die transkutane Biopsie eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adler LP, Faulhaber PF, Schnur KC, Al-Kasi NL, Shenk RR (1997) Axillary lymh node metastases: screening with [F-18]2-deoxy-2-fluoro-D-glucose (FDG) PET. Radiology 203 (2): 223–227

    Google Scholar 

  • Allgayer B, Lukas P, Loos W, Sommerhoff KB (1993) MRT der Mamma mit 2D-Spinecho und Gradientenecho-Sequenzen indiagnostischen Problemfällen. Fortschr Röntgenstr 158: 423–427

    Article  CAS  Google Scholar 

  • American College of Radiology (1984) College policy reviews use of thermography. Am Coll Radiol Bull 40:13–15

    Google Scholar 

  • Andersson I, Aspegren K, Janzon L et al. (1988) Mammographie screening and mortality from breast cancer: the Malmö mammographic screening trial. Br Med J 297: 943–948

    Article  CAS  Google Scholar 

  • Avril N, Dose J, Jänicke F et al. (1996) Metabolie characterization of breast tumors with positron emission tomography using F-18-fluorodeoxyglucose. J Clin Oncology 14: 1848–1857

    CAS  Google Scholar 

  • Baker LH (1982) Breast Cancer Detection Project: five-year summary report. CA Cancer J Clin 32:194–225

    Article  PubMed  CAS  Google Scholar 

  • Barton MB, Harris R, Fletcher SW (1999) Does this patient have breast cancer? The screening clinical breast examination: should it be done? How? Jama 282:1270–1280

    Article  PubMed  CAS  Google Scholar 

  • Bassett LW, Kimme-Smith C, Sutherland LK et al.(1987) Automated and hand-held breast US: Effect on patient management. Radiology 165:103

    PubMed  CAS  Google Scholar 

  • Baum JK, Khalkhali I, Villanueva-Meyer J, Schnitt S, Houlihan MJ, Haber SB (1996) Diagnostic accuracy of Tc-99 m Sesta-mibi breast imaging in the mammographically dense breast. Radiology 201 (P): 177

    Google Scholar 

  • Berghammer P, Obwegeser R, Mulauer-Ertl S et al. (1999) 99m-Tc-tetrofosmin scintigraphy and breast cancer. Gynecol Oncol 73: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Bird RE, Mc Lelland R (1986) How to initiate and operate a low-cost screening mammography center. Radiology 161: 43–47

    PubMed  CAS  Google Scholar 

  • Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184: 613–617

    PubMed  CAS  Google Scholar 

  • Bongers V, Borel-Rinkes IH, Sie-Go DM, Pijnappel R, de Hooge P, van Rijk PP (1999) Detection of malignant breast tumours in dense beast tissue: results of 99mTc-tetrofosmin scintimam-mography related to surgery. Eur J Surg Oncol 25:152–156

    Article  PubMed  CAS  Google Scholar 

  • Brem RF, Behrndt VS, Sanow L, Gatewood OMB (1999) Atypical ductal hyperplasia: histologic underestimation of carcinoma in tissue harvested from impalpable breast lesions using 11-Gauge stereotactically guided directional vacuum-assisted biopsy. Am J Roentgenol 172:1405–1407

    Article  CAS  Google Scholar 

  • Brenner J, Fajardo L, Fisher PR et al. (1996) Percutaneous core biopsy of the breast: Effect of operator experience and number of samples on diagnostic accuracy. Am J Röntgenol 166:341–346

    Article  CAS  Google Scholar 

  • Brown LF, Berse B, Jackmann RW, Tognazzi K, Manseau J, Sen-ger DR, Dvorak HF (1993) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gatrointestinal tract. Cancer Research 53: 4727–4735

    PubMed  CAS  Google Scholar 

  • Carlson KL, Helvie MA, Roubidoux MA et al.(1999) Relationship between mammographie screening intervals and size and histology of ductal carcinoma in situ. Am J Roentgenol 172:313–317

    Article  CAS  Google Scholar 

  • Chang CH, Sibala JL, Fritz SL, Dwyer SJ (1979) Specific value of computed tomographic breast scanner (CT/M) in diagnosis of breast disease. Radiology 132: 647–652

    PubMed  CAS  Google Scholar 

  • Choucair R, Holcomb M, Matthews R et al.(1988) Biopsy of non-palpable breast lesions. Am J Surg 156:453–456

    Article  PubMed  CAS  Google Scholar 

  • Cole-Beuglet C, Goldberg BB, Kurtz AB, Patchefsky AS, Shaber GS, Rubin CS (1981) Ultrasound mammography: a comparison with radiographic mammography. Radiology 139: 693–698

    PubMed  CAS  Google Scholar 

  • Cole-Beuglet C, Goldberg BB, Kurtz AB, Patchefsky AS, Shaber GS, Rubin CS (1982) Clinical experience with a prototype real-time dedicated breast scanner. Am J Roentgenol 139: 905–911

    Article  CAS  Google Scholar 

  • Cole-Beuglet C, Soriano RZ, Kurtz AB et al.(1983) Ultrasound analysis of 104 primary breast carcinomas classified according to histopathologic type. Radiology 147:191–196

    PubMed  CAS  Google Scholar 

  • Croll J, Kotevivch J, Tabrett M (1982) The diagnosis of benign disease and the exclusion of malignancy in patients with breast symptoms. Semin US 3:38

    Google Scholar 

  • Dean KI, Komu M (1994) Breast tumor imaging with ultra low field. MRI. Magn Res Imaging 12:395–401

    Article  CAS  Google Scholar 

  • Deland FH (1969) A modified technique of ultrasonography for the detection and differential diagnosis of breast lesions. Am J Roentgenol 105: 446–452

    Article  CAS  Google Scholar 

  • Delorme S (1993) Dopplersonographie des Mammakarzinoms. Radiologe 33: 287–290

    PubMed  CAS  Google Scholar 

  • Dempsey PJ (1988) The importance of resolution in the clinical application of breast sonography. Ultrasound Med Biol 14 (Suppl 1): 43

    Article  PubMed  Google Scholar 

  • Dershaw DD (1995) Evaluation of the breast undergoing lumpectomy and radiation therapy. Radiol Clin North Am 33: 1147–1160

    PubMed  CAS  Google Scholar 

  • Diaz LK, Wiley EL, Venta LA (1999) Are malignant cells displaced by large-gauge needle core biopsy of the breast? Am J Roentgenol 173:1303–1313

    Article  CAS  Google Scholar 

  • Eary JF, Mankoff DA, Dunnwald LK et al. (1999) Sentinel lymph node mapping for breast cancer: analysis in a diverse patient group. Radiology 213:526–529

    PubMed  CAS  Google Scholar 

  • Egan RL, Egan KL (1984a) Automated water-path full-breast sonography: Correlation with histology in 176 solid lesions. Am J Roentgenol 143:499–507

    Article  CAS  Google Scholar 

  • Egan RL, Egan KL (1984b) Detection of breast carcinoma: Comparison of automated water-path whole-breast sonography, mammography, and physical examination. Am J Roentgenol 143:493–497

    Article  CAS  Google Scholar 

  • Feig SA (1989) The role of ultrasound in a breast imaging center. Semin Ultrasound CT MR 10:90–105

    PubMed  CAS  Google Scholar 

  • Fischer U, Kopkas L, Grabbe E (1999) Breast Carcinoma: Effect of preoperative contrast-enhanced MR Imaging on the therapeutic approach. Radiology 213: 881–888

    PubMed  CAS  Google Scholar 

  • Fischer U, von Heyden D, Vosshenrich R, Vieweg I, Grabbe E (1993) Signalverhalten maligner und benigner Läsionen in der dynamischen 2D-MRT der Mamma. Fortschr Röntgenstr 158: 287–292

    Article  CAS  Google Scholar 

  • Fischer U, Vosshenrich R, Probst A, Burchhardt H, Grabbe E (1994) Präoperative MR-Mammographie bei bekanntem Mammakarzinom. Sinnvolle Mehrinformation oder sinnloser Mehraufwand ? Fortschr Röntgenstr 161:300–306

    Article  CAS  Google Scholar 

  • Fischer U, Westerhof JP, Brinck U, Korabiowska M, Schauer A, Grabbe F (1996) Das duktale In-situ-Karzinom in der dynamischen MR-Mammographie bei 1,5 T. Fortschr Röntgenstr 164: 290–294

    Article  CAS  Google Scholar 

  • Fishman AJ (1996) Positron emission tomography in the clinical evaluation of metastatic cancer. J Clin Oncology 14:691–696

    Google Scholar 

  • Fletcher SW (1995) Why question screening mammography for women in their forties ? Radiol Clin North Am 33:1259–1271

    PubMed  CAS  Google Scholar 

  • Fletcher BD, Hanna SL, Fairclough DL, Gronemeyer SA (1992) Pediatric muculoskeletal tumors: use of dynamic-contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184: 243–248

    PubMed  CAS  Google Scholar 

  • Flickinger FW, Allison JD, Sherry RM, Wright JC (1993) Differentiation of benign from malignant breast masses by timeintensity evaluation of contrast enhanced MRI. Magn Res Imaging 11: 617–620

    Article  CAS  Google Scholar 

  • Folkman L, Meerler E, Abernathy C (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 33: 275–288

    Article  Google Scholar 

  • Fung HM, Jackson FI (1990) Clinically and mammographically occult breast lesions demonstrated by ultrasound. J R Soc Med 83: 696–698

    PubMed  CAS  Google Scholar 

  • Gerhardt P (1995) Empfehlungen des Ausschusses Magnetresonanztomographie für Qualitätsanforderungen der MRT der Mamma. Jahresbericht der Deutschen Röntgengesell-schaft 43:59–61

    Google Scholar 

  • Gilles R, Guinebretière JM, Lucidarme O (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631

    PubMed  CAS  Google Scholar 

  • Gisvold JJ, Brown LR, Swee RG (1986) Comparison of mammography and transillumination light scanning in the detection of breast lesions. Am J Roentgenol 147:191–194

    Article  CAS  Google Scholar 

  • Giuseppetti GM, Rizzatto G, Gozzi G et al.(1989) Ruolo dell’ec-tomografia nella diagnosi del carcinoma infraclinico della mammella. Radiol Med 78:339–342

    PubMed  CAS  Google Scholar 

  • Gribbestad IS, Nilsen G, Fjosne HE, Kvinnsland S, Haugen OA, Rinck PA (1994) Comparative signal intensity measurements in dynamic gadolinium-enhanced MR mammography. J Magn Reson Imaging 4: 477–480

    Article  PubMed  CAS  Google Scholar 

  • Guideline to clinical preventive services: Report of the U.S. Preventive Services Task Force (1989) Washington, Department of Health and Human Services

    Google Scholar 

  • Gutowski TD, Fisher SJ, Moon S, Wahl RL (1992) Experimental studies of 18F-2-fluoro-2-d-glucose (FDG) in infection and in reactive lymphnodes. J Nucl Med 32:1548–1555

    Google Scholar 

  • Haffty BG, Lee C, Philpotts L, Horvath L, Ward B, McKhann C, Tocino I (1998) Prognostic significance of mammographic detection in a cohort of conservatively treated breast cancer patients. Cancer J Sci Am 4: 35–40

    PubMed  CAS  Google Scholar 

  • Hall FM, Storella JM, Silverstone DZ, Wyshak G (1988) Nonpalpable breast lesions: recommendations for biopsy based on suspicion of carcinoma at mammography. Radiology 167: 353–358

    PubMed  CAS  Google Scholar 

  • Haran EF, Margalit R, Grobgeld D, Degani H (1995) Angiogenesis in breast cancer visualized by dynamic contrast enhanced MRI and histochemistry. Syllabus SMR Washington, Workshop in breast MR

    Google Scholar 

  • Harms SE, Flamig DP (1993) MR imaging of the breast. J Magn Reson Imaging 3: 277–283

    Article  PubMed  CAS  Google Scholar 

  • Harper AP, Kelly-Fry E, Noe S (1981) Ultrasound breast imaging — the method of choice for examining the young patient. Ultrasound Med Biol 7:231–237

    Article  PubMed  CAS  Google Scholar 

  • Hendrick RE, Botsco M, Plott CM (1995) Quality control in mammography. Radiol Clin North Am. 33:1041–1058

    PubMed  CAS  Google Scholar 

  • Heywang SH, Hahn D, Schmidt H, Krischke I, Eiermann W, Bas-sermann R, Lissner J (1986) MR imaging of the breast using Gd-DTPA. J Comput Assist Tomogr 10:199–204

    Article  PubMed  CAS  Google Scholar 

  • Heywang-Köbrunner SH (1990) Contrast enhanced MRI of the breast. HD Med Information. Berlin: Schering

    Google Scholar 

  • Heywang-Köbrunner SH (1994) Contrast-enhanced magnetic resonance imaging of the breast. Invest Radiol 29:94–104

    Article  PubMed  Google Scholar 

  • Hickman PF, Moore NR, Shepstone BJ (1994) The indeterminate breast mass: assessment using contrast enhanced magnetic resonance imaging. Br J Radiol 67:14–20

    Article  PubMed  CAS  Google Scholar 

  • Hilton SVW, Leopold GR, Olson LK et al.(1986) Real-time breast sonography: Application in 300 consecutive patients. Am J Roentgenol 147:479

    Article  CAS  Google Scholar 

  • Houn F, Elliott ML, Mc Crohan JL (1995) The mammography quality standards act of 1992: History and philosophy. Radiol Clin North Am 33:1059–1066

    PubMed  CAS  Google Scholar 

  • Huber S, Helbich T, Kettenbach J, Dock W, Zuna I, Delorme S (1998) Effects of a microbubble contrast agent on breast tumors: computer-assisted quantitative assessment with color coppler US — early experience. Radiology 208: 485–489

    PubMed  CAS  Google Scholar 

  • Hunt KA, Rosen EL, Sickles EA (1999) Outcome analysis for women undergoing annual versus biennial screening mammography: a review of 24,211 examinations. Am J Roentgenol 173: 285–289

    Article  CAS  Google Scholar 

  • Isaacs GI, Rozner L, Fox JW (1985) Breast lumps after reduction mammography. Ann Plast Surg 15:394–399

    Article  PubMed  CAS  Google Scholar 

  • Jackman RJ, Nowels KW, Rodriguez-Soto J, Marzoni FA Jr, Fin-kelstein SI, Shepard MJ (1999) Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: falsenegative and histologic underestimation rates after long-term follow up. Radiology 210:799–805

    PubMed  CAS  Google Scholar 

  • Jackson VP (1990) The role of US in breast imaging. Radiology 177:305–311

    PubMed  CAS  Google Scholar 

  • Jellins J, Kossoff G, Buddee FW, Reeve TS (1971) Ultrasonic visualization of the breast. Med J Aust 1:305–307

    PubMed  CAS  Google Scholar 

  • Jellins J, Kossoff G, Reeve TS (1977) Detection and classification of liquid-filled masses in the breast by gray scale echography. Radiology 125: 205–212

    PubMed  CAS  Google Scholar 

  • Jellins J., Kossof G, Reeve TS, Barraclough BH (1975) Ultrasonic grey scale visualization of breast disease. Ultrasound Med Biol 1:393–404

    Article  PubMed  CAS  Google Scholar 

  • Jellins J, Reeve TS, Croll J et al.(1982) Results of breast echographic examinations in Syndey, Australia, 1972–1979. Semin US 3:58

    Google Scholar 

  • Kaiser (1993) MR-Mammographie. Radiologe 33: 292–298

    PubMed  CAS  Google Scholar 

  • Kaiser WA, Zeitler E (1989) MR-imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170: 681–686

    PubMed  CAS  Google Scholar 

  • Kelly-Fry E (1980) Breast imaging. In: Sabbagha RE (Ed) Diagnostic ultrasound applied to obstetrics and gynecology. New York: Harper & Row: 327–350

    Google Scholar 

  • Kessler LG, Feur EJ, Brown ML (1991) Projection of the breast cancer burden to US women: 1990–2000. Prev Med 20: 170–181

    Article  PubMed  CAS  Google Scholar 

  • Khaleghian R (1993) Breast cysts: Pitfalls in sonographic diagnosis. Australasian Radiol 37:192–194

    Article  CAS  Google Scholar 

  • Kobayashi T (1979) Diagnostic ultrasound in breast cancer: analysis of retrotumorous echo patterns correlated with sonic attenuation by cancerous connective tissue. JCU 7:471–479

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Kobayashi T, Taktani O, Hattori N, Kimura K (1974) Differential diagnosis of breast tumors: the sensitivity graded method of ultrasonography. Cancer 33:940–951

    Article  PubMed  CAS  Google Scholar 

  • Kopans DB (1995) Mammography screening and the controversy concerning women aged 40 to 49. Radiol Clin North Am 33:1273–1290

    PubMed  CAS  Google Scholar 

  • Kopans DB (1996) Imaging analysis of breast lesions. In: Harris JR, Lippman ME, Morrow M., Hellman S: Diseases of the breast. Philadelphia, New York: Lippincott-Raven: 71–83

    Google Scholar 

  • Kopans DB, Meyer JE, Lindfors KK (1985) Whole-breast US imaging: Four-year follow-up. Radiology 157:505–507

    PubMed  CAS  Google Scholar 

  • LaRaja RD, Saber AA, Sickles A (1999) Early experience in the use of the advanced breast biopsy instrumentation: a report of one hundred twenty-seven patients. Surgery 125:380–384

    Article  PubMed  CAS  Google Scholar 

  • Larson SM, Weiden PL, Grunbaum Z et al. (1981) Positron imaging feasibility studies. II. Characteristic of deoxygluco-se uptake in reodent and canine neoplasms: concise communication. J Nucl Med 15: 61–66

    Google Scholar 

  • Lee CH, Philpotts LE, Horvath LJ, Tocino I (1999) Follow-up of breast lesions diagnosed as benign with stereotactic coreneedle biopsy: frequency of mammographic change and false negative rate. Radiology 212:189–194

    PubMed  CAS  Google Scholar 

  • Lee JK, Kao CH, Sun SS (1999) Technetium-99 m methylene diphosphonate scintimammography for evaluation of palpable breast masses. Oncol Rep 6: 659–663

    PubMed  CAS  Google Scholar 

  • Leibman AJ, Frager D, Choi P (1999) Experience with breast biopsies using the advanced breast biopsy instrumentation system. Am J Roentgenol 172:1409–1412

    Article  CAS  Google Scholar 

  • Liberman L, Cody III HS, Hill ADK et al.(1999a) Sentinel lymph node biopsy after percutaneous diagnosis of nonpalpable breast cancer. Radiology 211: 835–844

    PubMed  CAS  Google Scholar 

  • Liberman L, Vulo M, Dershaw DD et al. (1999b) Epithelial displacement after stereotactic 11-Gauge directional vacuumassisted breast biopsy. Am J Roentgenol 172: 677–681

    Article  CAS  Google Scholar 

  • Liberman L, Zakowski MF, Avery S et al. (1999c) Complete percutaneous excision of infiltrating carcinoma at stereotactic breast biopsy: how can tumor size be assessed? Am J Roentgenol 173:1315–1322

    Article  CAS  Google Scholar 

  • Lidbrink A, Elfving J, Frisell J, Jonsson E (1996) Neglected aspects of false positive findings of mammography in breast cancer screening: analysis of false positive cases from the Stockholm trial. Br Med J 312: 273–276

    Article  CAS  Google Scholar 

  • Lochmüller H, Baumgärtner M, Kessler M (1986) Radiologische Methoden in Gynäkologie und Geburtshilfe. In: Liss-ner J: Radiologie IL Stuttgart: Ferdinand Enke Verlag: 451–472

    Google Scholar 

  • Madjar H, Münch S, Sauerbrei W, Bauer M, Schillinger H (1990) Differenzierte Mammadiagnostik durch CW-Doppler-Ul-traschall. Radiologie 30:193–197

    CAS  Google Scholar 

  • Matthews BD, Williams GB (1999) Initial experience with the advanced breast biopsy instrumentation system. Am J Surg 177:97–101

    Article  PubMed  CAS  Google Scholar 

  • Meyer JE, Kopans DB, Stomper PC (1984) Occult breast abnormalities: Percutaneous preoperative needle localization. Radiology 150:335–340

    PubMed  CAS  Google Scholar 

  • Michaelson JS, Halpern E, Kopans DB (1999) Breast cancer: computer simulation method for estimating optimal intervals for screening. Radiology 212:551–560

    PubMed  CAS  Google Scholar 

  • Mondai A, Sharma R, Chakravarty KL et al.(1999) Delayed Tc-99 m citrate scintigraphy in the evaluation of palpable breast masses. Clin Nucl Med 24:309–313

    Article  Google Scholar 

  • Monsees B, Destouet JM, Gersell D (1988) Light scanning of nonpalpable breast lesions: Reevaluation. Radiology 167: 352

    PubMed  CAS  Google Scholar 

  • Ney FG, Feist JN, Altemus LR (1972) Characteristic angiographic criteria of malignancy. Radiology 104:567–570

    PubMed  CAS  Google Scholar 

  • Nitzsche EU, Hoh CK, Dalbohm M, Glaspy A, Phelps ME, Moser EA (1993) Ganzkörper-Positronen-Emissions-Tomographie beim Mammakarzinom. Fortschr Röntgenstr 158: 293–298

    Article  CAS  Google Scholar 

  • Öllinger H, Heins S, Sander B, Schönegg W, Flesch U, Meissner R, Felix R (1993) Gd-DTPA enhanced MRI of the breast: the most sensitive method for detecting multicentric carcinomas in female breast? Eur Radiol 3: 223–226

    Article  Google Scholar 

  • Rebner M, Chesbrough R, Gregory N (1999) Initial experience with the advanced breast biopsy instrumentation device. Am J Roentgenol 173: 221–226

    Article  CAS  Google Scholar 

  • Reuter K, dòrsi CJ, Reale F (1984) Intracystic carcinoma of the breast: the role of ultrasonography. Radiology 153: 233–234

    PubMed  CAS  Google Scholar 

  • Rieber A, Niissle K, Merkle E, Kreienberg R, Tomczak R, Brambs H-J (1999) MR-Mammography: Influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease. Eur Radiol 9:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Rieber A, Tomczak R, Mergo P, Wenzel V, Zeitler H, Brambs H-J (1997) Magnetic resonance mammography in the differential diagnosis of mastitis versus inflammatory carcinoma. J Comput Assist Tomog 21:128–132

    Article  CAS  Google Scholar 

  • Rieber A, Tomczak R, Rosenthal H, Görich J, Kreienberg R, Brambs H-J (1997) Magnetic resonance imaging of the breast: changes in sensitivity during neoadjuvant chemotherapy. Br J Radiol 70: 452–458

    PubMed  CAS  Google Scholar 

  • Roberts MM, Alexander FE, Anderson TJ et al. (1990) Edinburgh trial of screening for breast cancer: mortality at seven years. Lancet 335: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Rodes N, Lopez M, Pearson D (1986) The impact of breast cancer screening on survival: a 5-to 10-year follow-up study. Cancer 57:581–585

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist CJ, Lindfors KK (1994) Screening mammography in women aged 40–40 years: analysis of costeffectiveness. Radiology 191:647–650

    PubMed  CAS  Google Scholar 

  • Rostom AY, Powe J, Kandil A et al.(1999) Positon emission tomography in breast cancer: a clincopathological correlation of results. Br J Radiol 72:1064–1068

    PubMed  CAS  Google Scholar 

  • Rutquist LE, Miller AB, Andersson I, Hakama M, Hakulinen T, Sigfusson BT, Tabar L (1990) Reduced breast cancer mortality with mammography screening: an assessment of currently available data. Int J Cancer S5:76–84

    Article  Google Scholar 

  • Samuels JR, Haffty BG, Lee CH, Fischer DB (1992) Breast conservation therapy in patients with mammographically undetected breast cancer. Radiology 185:425–427

    PubMed  CAS  Google Scholar 

  • Schillaci O, Danieli R, Scopinaro F (1999) Role of Tc-99 m Tetrofosmin imaging in the examination of patients with breast lesions. Radiology 220: 284–285

    Google Scholar 

  • Schleicher UM (1995) Entdeckung des Mammakarzinoms — Statistisch-epidemiologische Untersuchung zum derzeitigen Stand. Fortschr Roentgenstr 163: 469–473

    Article  CAS  Google Scholar 

  • Schoenberger SG, Sutherland CM, Robinson AE (1988) Breast neoplasms: duplex sonographic imaging as an adjunct in diagnosis. Radiology 168: 665–668

    PubMed  CAS  Google Scholar 

  • Schröder R-J, Hadijuana J, Hidajat N et al. (1998) Farbkodierte signalverstärkte Duplexsonographie raumfordernder intramammärer Prozesse. Fortschr Röntgenstr 168:444–450

    Article  Google Scholar 

  • Seidman H, Gelb SK, Silverberg E, La Verda N, Lubera J (1987) A survival experience in the breast cancer detection demonstration project. CA Cancer J Clin 37: 258–290

    Article  PubMed  CAS  Google Scholar 

  • Sener SF, Winchester DJ, Winchester DP et al.(1999) Spectrum of mammographically detected breast cancers. Am Surg Aug 65:731–735

    CAS  Google Scholar 

  • Shapiro S, Venet W, Strax P (1982) Ten-to forteen-year effect of screening on breast cancer mortality. J Natl Cancer Instit 69: 349–355

    CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-in-itiated angiogenesis. Nature 359: 843–845

    Article  PubMed  CAS  Google Scholar 

  • Sickles EA, Filly RA, Callen PW (1983) Breast cancer detection with sonography and mammography: Comparison using state-of-the-art equipment. Am J Roentenol 140: 843–845

    Article  CAS  Google Scholar 

  • Sickles EA, Filly RA, Callen PW (1984) Benign breast lesions: Ultrasound detection and diagnosis. Radiology 151:467–470

    PubMed  CAS  Google Scholar 

  • Sickles EA, Ominsky SH, Solitto RA, Galvin HB, Monticciolo DL (1990) Medical audit of a rapid-throughput mammography screening practice: methodology and results of 27.114 examinations. Radiology 175:323–327

    PubMed  CAS  Google Scholar 

  • Sittek H, Kessler M, Heuck AF et al. (1996) Dynamische MR-Mammographie: Zur Differenzierung unterschiedlicher Formen der Mastopathie geeignet? Fortschr Röntgenstr 165: 59–63

    Article  CAS  Google Scholar 

  • Smallwood JA, Guyer P, Dewbury K et al.(1986) The accuracy of ultrasound in the diagnosis of breast disease. Ann R Coll Surg Engl 68:19–22

    PubMed  CAS  Google Scholar 

  • Som P, Atkins HL, Bandoypadhyay D et al. (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D glucose (F-18): nontoxic tracere for rapid tumor detection. J Nucl Med 21: 670–675

    PubMed  CAS  Google Scholar 

  • Srivastava A, Webster DJT, Woodcock JP, Shrotria S, Mansel RE, Hughes LE (1988) Role of Doppler ultrasound flowmetry in the diagnosis of breast lumps. Br J Surg 75:851–853

    Article  PubMed  CAS  Google Scholar 

  • Stack JP, Redmond OM, Codd MC, Dervan PA, Ennis JT (1990) Breast disease: Tissue characterisation with Gad-DTPA enhancement profiles. Radiology 174:491–494

    PubMed  CAS  Google Scholar 

  • Stavros AT, Dennis MA (1993) The ultrasound of breast pathology. In: Parker SH, Jobe WE (Eds) Percutaneous Breast Biopsy. New York: Raven: 111

    Google Scholar 

  • Tabar L, Fagerberg G, Duffy SW, Day NE, Gad A, Grontoft O (1992) Update of the Swedish two-country program of mammographic screening for breast cancer. Radiol Clin North Am 30:187–210

    PubMed  CAS  Google Scholar 

  • Tabar L, Fagerberg CJG, Gad A (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet 1: 829–222

    Article  PubMed  CAS  Google Scholar 

  • Tabar L, Gad A (1981) Screening for breast cancer: the Swedish trial. Radiology 138: 219–222

    PubMed  CAS  Google Scholar 

  • Taillefer R (1999) The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med 29:16–40

    Article  PubMed  CAS  Google Scholar 

  • Tesoro-Tess JD, Amoruso A, Rovini D et al. (1995) Microcalcifications in clinically normal breast: the value of high field, surface coil, Gd-DTPA-enhanced MRI. Eur Radiol 5:417–422

    Article  Google Scholar 

  • Toi M, Inada K, Suzuki H, Tominaga T (1995) Tumor angiogenesis in breast cancer: is importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res Treat. 36:193–204

    Article  PubMed  CAS  Google Scholar 

  • Ueno E, Tohno E, Itoh K (1986) Classification and diagnostic criteria in breast echography. Jpn J Med Ultrasonics 13:19

    Google Scholar 

  • Verbeek ALM, Hendricks JHCL, Holland R, Mravunac M, Sturmans F, Day NE (1984) Reduction of breast cancer mortality through mass screening with modern mammography: first results of the Nijmegen project, 1975–1981. Lancet 1:1222–1224

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Cody RL, Hutchins GD, Mudgett EE (1991) Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analog 2-F-18)-floro-2-deoxy-d-glucose. Radiology 179: 765–770

    PubMed  CAS  Google Scholar 

  • Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossmann HB, Fisher S (1991) 18F-2-deoxy-2fluoro-d-glucose (DG) up-take into human tumor xenografst: feasibility studies for cancer imaging with PET. Cancer 67: 1544–1550

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Kaminski MS, Ethier SP, Hutchins GD (1990) The potential of 2-deoxy-2(l8F)fluoro-D-glucose (FDG) for the detection of tumor involvement in lymh nodes. J Nucl Med 31: 1831–1835

    PubMed  CAS  Google Scholar 

  • Weidner N, Folkman J, Pozza F et al. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84: 1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Weinmann HJ, Laniado M, Mützel W (1994) Pharmakokinetics of Gd-DTPA/Dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys 16: 67–83

    Google Scholar 

  • Weinreb JC, Newstead G (1994) Controversies in breast MRI. Magn Reson Q10: 67–83

    Google Scholar 

  • Wellstein A (1996) Control of angiogenesis. In: Harris JR, Lippman ME, Morrow M, Hellman S: Diseases of the breast. Philadelphia, New York: Lippincott-Raven: 293–298

    Google Scholar 

  • Wild JJ, Neal D (1951) The use of high frequency ultrasonic waves for detecting changes of texture in the living tissue. Lancet 1: 655–657

    Article  PubMed  CAS  Google Scholar 

  • Won B, Reynolds HE, Lazaridis CL, Jackson VP (1999) Stereotactic biopsy of ductal carcinoma in situ of the breast using an 11-Gauge vacuum-assisted device: persistent underestimation of disease. Am J Roentgenol 173: 227–229

    Article  CAS  Google Scholar 

  • Zonderland HM, Coerkamp EG, Hermans J, van de Vijer MJ, van Voorthuisen Ad E (1999) Diagnosis of breast cancer: contribution of US as an adjunct to mammography. Radiology 213:413–422

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieber, A., Brambs, HJ., Diederichs, C.G., Kreienberg, R. (2002). Bildgebende Verfahren: Früherkennung und Diagnostik. In: Kreienberg, R., Volm, T., Möbus, V., Alt, D. (eds) Management des MAMMAKARZINOMS. Onkologie Aktuell . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08460-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08460-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08461-8

  • Online ISBN: 978-3-662-08460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics