Skip to main content

Dietary fatty acids and myocardial function

  • Conference paper
Book cover Lipid metabolism in the normoxic and ischaemic heart

Summary

It is widely recognized that dietary polyunsaturated fatty acids (PUFA’s) and cholesterol can profoundly influence the development of atherosclerotic plaques in coronary vessels, which may lead to myocardial infarction. The possibility that dietary fatty acids may also directly influence cardiac function has received less attention. We therefore reviewed the evidence of the effects of dietary fatty acids, in particular n-3 and n-6 PUFA’s, on myocardial phospholipid fatty acid composition and cardiovascular performance. Heart organelles appear to incorporate uncommon fatty acids like 22:1 and trans- 18:1. Diets enriched with 22:1 induce myocardial lipidosis. N-9, n-6 and n-3 families compete among membrane C20 and C22 acids. Several studies have dealt with the relation between diet-induced changes of cardiac membrane (sarcolemma, sarcoplasmic reticulum and mitochondria) phospholipids and membrane function. In view of the variety of diets used and of the membrane functions studied, the results do not permit equivocal interpretation. Several investigators have reported an altered stress response of the heart due to a change of PUFA’s in the diet. In rats fed with a low 18:2n-6/18:3n-3 ratio combined with relatively low amounts of saturated fatty acids, a high incidence of myocardial lesions has been observed. Pigs are less sensitive but more susceptible to the development of vitamin E deficiency, when the dietary PUFA content is high. Increased contractility and coronary flow rate have been reported for Langendorff-perfused hearts of rats fed 18:2n-6-rich diets. The effects on coronary flow rate are possibly related to alterations in eicosanoid synthesis, which may also contribute to the reduction by n-6 or n-3 PUFA’s in infarct size, magnitude of recovery of function and suppression of reperfusion arrhythmias following release of a coronary artery ligation. On the other hand, increased peroxidation of membrane lipids, due to their high content of n-3 PUFA, may be deleterious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeywardena MY, McMurchie EJ, Russell GR, Sawyer WH, Charnock JS (1984) Response of rat heart membranes and associated iontransporting ATPases to dietary lipid. Biochim Biophys Acta 776: 48–59

    Article  PubMed  CAS  Google Scholar 

  2. Arens M, Könker S, Werner G, Petersen U (1986) Physiological effect of various mixtures of oleic, linoleic and linolenic acids on growing pigs. 5. Influence on the lipids of the heart muscle. FetteSeifen-Anstrichmittel 86: 47–50

    Google Scholar 

  3. Awad AB, Chattopadhyay JP (1983) Alteration of rat heart sarcolcmma lipid composition by dietary elaidic acid. J Nutr 113: 913–920

    PubMed  CAS  Google Scholar 

  4. Awad AB, Chattopadhyay JP (1983) Effect of dietary fats on the lipid composition and enzyme activities of rat cardiac sarcolemma. J Nutr 113: 1878–1884

    PubMed  CAS  Google Scholar 

  5. Beare-Rogers JL (1977) Docosenoic acids in dietary fats. Prog Chem Fats Lipids 15: 29–56

    Article  CAS  Google Scholar 

  6. Bellenand JF, Baloutch G, Ong N, Lecerf J (1980) Effects of coconut oil on heart lipids and on fatty acid utilization in rapeseed oil. Lipids 15: 938–943

    Article  CAS  Google Scholar 

  7. Benediktsdbttir VE, Gudbjarnason S (1986) Arachidonic acid and docosahexanoic acid content of sarcolemmal phospholipids in relation to ventricular fibrillation in rats. J Mol Cell Cardiol 18: 90 (abstract)

    Google Scholar 

  8. Bijster GM, Vles RO (1984) Physiological effect of various mixtures of oleic, linoleic and linolenic acids on growing pigs: 6. Histomorphometric investigation of heart, liver, kidney and adipose tissue. Fette-Seifen-Anstrichmittel 86: 89–94

    Article  Google Scholar 

  9. Bremer J, Norum KR (1982) Metabolism of very long-chain monounsaturated fatty acids (22:1) and the adaptation to their presence in the diet. J Lipid Res 23, 243–256

    PubMed  CAS  Google Scholar 

  10. Brenner RR (1982) Nutritional and hormonal factors including desaturation of essential fatty acids. Prog Lipid Res 20, 41–47

    Article  Google Scholar 

  11. Brown JH, Buxton IL, Brunton LL (1985) α1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57, 532–537

    Article  PubMed  CAS  Google Scholar 

  12. Burr GO, Burr MM (1929) A new deficiency disease by rapid exclusion of fat from the diet. J Biol Chem 82, 345–367

    CAS  Google Scholar 

  13. CharnockJS, Dryden WF, McMurchie EJ, Abeywardena MY, Rusell GR (1983) Differences in the fatty acid composition of atrial and ventricular phospholipids of rat heart following standard and lipid-supplemented diets. Comp Biochem Physiol 75B, 47–52

    Article  Google Scholar 

  14. Charnock JS, McLennan PL, Abeywardena MY, Dryden WF (1985) Diet and cardiac arrhythmia: Effects of lipids on age-related changes in myocardial function in the rat. Ann Nutr Metabol 39, 306–318

    Article  Google Scholar 

  15. Clandinin MT (1978) The role of dietary long chain fatty acids in mitochondrial structure and function. Effects in rat cardiac mitochondrial respiration. J Nutr 108, 273–281

    PubMed  CAS  Google Scholar 

  16. Crandall DL, Griffith DR, Beitz DC (1982) Protection against the cardiotoxic effect of isoproterenolHCI by dietary polyunsaturated fatty acids and exercise. Toxicology and Applied Pharmacology 62, 152–157

    Article  PubMed  CAS  Google Scholar 

  17. Culp BR, Lands WEM, Lucchesi BR, Pitt R, Romson JC (1980) The effect of dietary supplementation of fish oil on experimental myocardial infarction. Prostaglandins 20, 1021–1031

    Article  PubMed  CAS  Google Scholar 

  18. Danse LHJC, Verschuren PM (1978) Fish oil-induced yellow fat disease in rats. I Histological changes. Vet Pathol 15, 114–124

    Article  PubMed  CAS  Google Scholar 

  19. Das DK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow SC (1986) Pathophysiology of superoxide radical as potential mediator of reperfusion in pig heart. Basic Res Cardiol 81, 155–166

    Article  PubMed  CAS  Google Scholar 

  20. De Deckere EAM (1981) Influences of dietary linoleic acid on coronary flow, left ventricular work and prostaglandin synthesis in the isolated rat heart. Thesis, Erasmus University Rotterdam

    Google Scholar 

  21. Dewailly P, Nouvelot A, Sezille G, Fruchart JC, Jaillard J (1977) Changes in fatty acid composition of cardiac mitochondrial phospholipids in rats fed rapeseed oil. Lipids 13, 301–304

    Article  Google Scholar 

  22. De Wildt DJ, Speijers GJA (1984) Influence of dietary rapeseed oil and erucic acid upon myocardial ’ performance and hemodynamics in rats. Toxicol Appl Pharmacol 74, 99–108

    Article  PubMed  Google Scholar 

  23. Dyerberg J (1986) Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Rev 44, 125–134

    Article  PubMed  CAS  Google Scholar 

  24. Egwin PO, Kummerow FA (1972) Response of docosapentaenoic acids of rat heart phospholipids to dietary fat. Lipids 7, 567–571

    Article  Google Scholar 

  25. Farias RN, Bloj B, Morero RD, Sineriz F, Trucco RE (1975) Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim Biophys Acta 415, 231–251

    Article  PubMed  CAS  Google Scholar 

  26. Fragiskos B, Chan AC, Choi PC (1986) Competition of n-3 and n-6 polyunsaturated fatty acids in the isolated perfused rat heart. Ann Nutr Metabol 30, 331–334

    Article  CAS  Google Scholar 

  27. Goodnight SH, Harris WS, Connor WE, Illingworth DR (1982) Polyunsaturated fatty acids, hyperlipedemia, and thrombosis. Arteriosclerosis 2, 87–113

    Article  PubMed  CAS  Google Scholar 

  28. Gross RW (1984) High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: A fast atom bombardment mass spectroscopic and gaschromatography — mass spectroscopic characterization. Biochemistry 23, 158–165

    Article  PubMed  CAS  Google Scholar 

  29. Gudjarnason S, Hallgrimsson J (1976) Prostaglandis and polyunsaturated fatty acids in heart muscle. Acta Biol Med Germ 35, 1969–1978

    Google Scholar 

  30. Gudbjarnason S, Oskerdèttir G, Doell B, Hallgrimsson J (1978) Myocardial membrane lipids in relation to cardiovascular disease. Adv Cardiol 25, 130–144

    PubMed  CAS  Google Scholar 

  31. Hammer CT, Wills ED (1978) The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipidperoxidation. Biochem J 174, 585–593

    PubMed  CAS  Google Scholar 

  32. Hartog JM, Lamers JMJ, Montfoort A, Becker AE, Klompe M, Morse H, Ten Cate FJ, van der Werf L, Hülsmann WC, Hugenholtz PG, Verdouw PD (1987) The effects of a mackerel-oil and a lard-fat enriched diet on plasma lipids, cardiac membrane phospholipids, cardiovascular performance and morphology in young pigs. Am J Clin Nutr (in press)

    Google Scholar 

  33. Hartog JM, Lamers JMJ, Verdouw PD (1986) The effects of dietary mackerel oil on plasma and cell membrane lipids, on hemodynamics and cardiac arrhythmias during reccurrent acute ischemia in the pig. Basic Res Cardiol 81: 567–580

    Article  PubMed  CAS  Google Scholar 

  34. Hartog JM, Lamers JMJ, Achterberg PW, van Heuven-Nolsen D, Nijkamp FP, Verdouw PD (1987) The effects of dietary mackerel oil on the recovery of cardiac function after acute ischaemic events in the pig. Basic Res Cardiol (this volume)

    Google Scholar 

  35. Herold PM, Kinsella JE (1986) Fish oil consumption and decreased risk of cardiovascular disease: a comparison of findings from animal and human feeding trials. Am J Clin Nutr 43, 566–598

    PubMed  CAS  Google Scholar 

  36. Hoffmann P (1986) Cardiovascular actions of dietary polyunsaturated and related mechanisms. A stateof-the art review. Prostaglandins 21, 113–147

    CAS  Google Scholar 

  37. Holmes RP, Mahfouz M, Travis BD, Yoss NL, Keenan MJ (1983) The effect of membrane lipid composition on the permeability of membranes to Cat’. NY Acad Sci 414, 44–56

    Article  CAS  Google Scholar 

  38. Hsu CML, Kummerow FA (1977) Influence of elaidate and erucate on heart mitochondria. Lipids 12, 486–508

    Article  PubMed  CAS  Google Scholar 

  39. Innis SM, Clandinin MT (1981) Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Biochem J 193, 155–167

    PubMed  CAS  Google Scholar 

  40. Iritani N, Fujikawa S (1982) Competitive incorporation of dietary n-3 and n-6 polyunsaturated fatty acids into tissue phospholipids in rats. J Nutr Sci Vitaminol 28, 621–629

    Article  PubMed  CAS  Google Scholar 

  41. Karmazyn M and Dhalla NS (1983) Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 61, 1207–1225

    Article  PubMed  CAS  Google Scholar 

  42. Koster JF, Biemond P, Stam H (1987) Lipid peroxidation and myocardial ischaemic changes: Cause or consequence. Basic Res Cardiol (this volume)

    Google Scholar 

  43. Kramer JH, Mak IT, Weglicki WB (1984) Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipidperoxidation. Circ Res 55, 120–124

    Article  PubMed  CAS  Google Scholar 

  44. Kramer JKG (1980) Comparative studies on composition of cardiac phospholipids in rats fed different vegetable oils, Lipids 15, 651–660

    Article  PubMed  CAS  Google Scholar 

  45. Kramer JKG, Farnworth ER, Thompson BK, Corner AH (1982) The effect of dietary fatty acids on the incidence of cardiac lesions and changes in the cardiac phospholipids in male rats. Prog Lipid Res 20, 491–499

    Article  Google Scholar 

  46. Kummerow FA (1983) Modification of cell membrane composition by dietary lipids and its implication for atherosclerosis NY Acad Sci 414, 29–43

    Google Scholar 

  47. Lamers JMJ, van der Werf L, Montfoort A, Hartog JM, Verdouw PD, Hülsmann WC (1986) Alterations in fatty acid profile of heart sarcolemma phospholipids by dietary fish oil and effects on functional activities of the membrane. J Mol Cell Cardiol 18, 88 (abstract)

    Google Scholar 

  48. Lands WEM (1986) Renewed questions about polyunsaturated fatty acids. Nutr Rev 44, 189–195

    Article  PubMed  CAS  Google Scholar 

  49. Lepran I, Nemecz GY, Kottai M, Szekeres L (1981) Effect of a linoleic acid-rich diet on the acute phase of coronary occlusion in conscious rats: influence of indomethacin and aspirin. J Cardiovasc Pharmacol 3, 847–853

    Article  PubMed  CAS  Google Scholar 

  50. Logan RL, Larking P, Nye ER (1977) Linoleic acid and susceptibility to fatal ventricular fibrillation in rats. Atherosclerosis 27, 265–269

    Article  PubMed  CAS  Google Scholar 

  51. McCutcheon JS, Kmermura T, Bhatnagar MK, Walker BL (1976) Cardiopathogenity of rapeseed oils and oil blends differing in erucic, linoleic and linolenic acid content. Lipids 11, 545–552

    Article  PubMed  CAS  Google Scholar 

  52. McLennan PL, Abeywardena MY, Charnock JS (1985) Influence of dietary lipids on arrhythmias and infarction after coronary artery ligation in rats. Can J Physiol Pharmacol 63, 1411–1417

    Article  PubMed  CAS  Google Scholar 

  53. McMurchie EJ, Abeywardena MY, Charnock JS, Gibson RA (1983) Differential modulation of rat heart mitochondrial membrane-associated enzymes by dietary lipid. Biochim Biophys Acta 760, 13–24

    Article  PubMed  CAS  Google Scholar 

  54. Menon NK, Dhopeshwarkar GA (1983) Differences in the fatty acid profile and 3-oxidation by heart homogenates of rats fed cis and trans octadecenoic acids. Biochim Biophys Acta 751, 14–20

    Article  PubMed  CAS  Google Scholar 

  55. Montfoort A, van der Werf L, Hartog JM, Hugenholtz PG, Verdouw PD, Hülsmann WC, Lamers JMJ (1986) The influence of fish oil diet and norepinephrine treatment on fatty acid composition of rat heart phospholipids and the positional fatty acid distribution in phosphatidylethanolamine. Basic Res Cardiol 81, 289–302

    Article  PubMed  CAS  Google Scholar 

  56. Norum KR, Drevon CA (1986) Dietary n-3 fatty acids and cardiovascular diseases. Arteriosclerosis 6, 352–355

    Google Scholar 

  57. Okumura K, Ogawa K, Satake T (1983) Phospholipid methylation in canine cardiac membranes. Relation to ß-adrenergic receptors and digitalis receptors. Jpn Heart J 24, 215–235

    Article  PubMed  CAS  Google Scholar 

  58. Opstvedt J, Svaar H, Hansen P, Pettersen J, Langmark FT, Barlow SM (1978) Comparison of lipid status in the heart of piglets and rats on short term feeding of marine lipids and rapeseed oils. Lipids, 14, 356–371

    Article  Google Scholar 

  59. Ortega A, Mas-Oliva J (1984) Cholesterol effect on enzyme activity of the sarcolemmal ( Ca2+ + Mg2+) ATPase from cardiac muscle. Biochim Biophys Acta 773, 231–236

    Article  PubMed  CAS  Google Scholar 

  60. Robblee NM, Clandinin MT (1984) Effect of dietary fat level and polyunsaturated fatty acid content on the phospholipid composition of rat cardiac mitochondrial membranes and mitochondrial ATPhase activity. J Nutr 114, 263–269

    PubMed  CAS  Google Scholar 

  61. Roine PE, Uksila H, Teir H, Rapola J (1960) Histopathological changes in rats and pigs fed rapeseed oil. Zeitschrift Ernährungswissenschaften 1, 118–124

    Article  CAS  Google Scholar 

  62. Rona G (1985) Editorial review: Catecholamine toxicity. J Mol Cell Cardiol 17, 291–306

    Article  PubMed  CAS  Google Scholar 

  63. Rothman JE, Lenard J (1977) Membrane asymmetry. The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195, 743–753

    Article  PubMed  CAS  Google Scholar 

  64. Ruiter A, Jongbloed AW, Van Gent CM, Danse LHJC, Metz SHM (1978) The influence of dietary mackerel oil on the condition of organ and on blood lipid composition in the young growing pig. Am J Clin Nutr 31, 2159–2166

    PubMed  CAS  Google Scholar 

  65. Scarpace PJ, O’Connor SW, Abrass IB (1985) Cholesterol modulation of ß-adrenergic receptor characteristics. Biochim Biophys Acta 845, 520–525

    Article  PubMed  CAS  Google Scholar 

  66. Schrör K (1985) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel 1985, 1–6 (editorial)

    Google Scholar 

  67. Singer P, Jaeger W, Witth M, et al (1983) Lipid and blood pressure lowering effect of mackerel diet in man. Atherosclerosis 49, 99–108

    Article  PubMed  CAS  Google Scholar 

  68. Stam H, Koster JF (1985) Fatty acid peroxidation in ischemia. In: Schrör K (ed) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel, pp 131–148

    Google Scholar 

  69. Stubbs CD, Smith AD (1984) The modification of mammalian polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779, 89–137

    Article  PubMed  CAS  Google Scholar 

  70. Swanson JE, Kinsella JE (1986) Dietary n-3 polyunsaturated fatty acids: modification of rat cardiac lipids and fatty acid composition. J Nutr 116, 514–523

    PubMed  CAS  Google Scholar 

  71. Szuha BF, McCarl RL (1973) Fatty acid composition of rat hearts as influenced by age and dietary fatty acids. Lipids 8, 241–245

    Article  Google Scholar 

  72. Tahin QS, Blum M, Carafoli E (1981) The fatty acid composition of subcellular membranes of rat liver, heart and brain: diet-induced modifications. Eur J Biochem 121: 5–13

    Article  PubMed  CAS  Google Scholar 

  73. Takamura H, Narita H, Urade R, Kito M (1986) Quantitative analysis of polyenoic phospholipid molecular species by high performance liquid chromatography. Lipids 21, 356–361

    Article  PubMed  CAS  Google Scholar 

  74. Ten Hoor F (1980) Cardiovascular effects of dietary linoleic acid. Nutrition and metabolism 24, 162–180

    Article  PubMed  Google Scholar 

  75. Van Vleet JF, Ferrans VJ (1977) Ultrastructure of hyaline microthrombi in myocardial capillaries of pigs with spontaneous “mulberry heart disease”. Am J Vet Res 38, 2077–2080

    PubMed  Google Scholar 

  76. Vles RO (1975) Nutritional aspects of rapeseed oil. In: Vergroesen AJ (ed) The role of fats in human nutrition Acad Press, London, New York, San Francisco, pp 433–477

    Google Scholar 

  77. Werns SW, Shea MJ, Lucchesi BR (1986) Free radicals and myocardial injury: pharmacologic implications. Circulation 74, 1–5

    Article  PubMed  CAS  Google Scholar 

  78. Yasuda S, Kitagawa Y, Sugimoto E, Kito M (1980) Effect of erucic acid on the phospholipid molecular species compositions of rat heart and liver. J Biochem, Tokyo, 87, 1511–1517

    CAS  Google Scholar 

  79. Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822, 267–287

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stam G. J. van der Vusse

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamers, J.M.J., Hartog, J.M., Verdouw, P.D., Hülsmann, W.C. (1987). Dietary fatty acids and myocardial function. In: Stam, H., van der Vusse, G.J. (eds) Lipid metabolism in the normoxic and ischaemic heart. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-08390-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08390-1_25

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-08392-5

  • Online ISBN: 978-3-662-08390-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics