Skip to main content

Doppler-begrenzte Absorptions- und Fluoreszenz- Spektroskopie mit Lasern

  • Chapter
Laserspektroskopie
  • 77 Accesses

Zusammenfassung

Im vorigen Kapitel wurden durchstimmbare Laser für die verschiedenen Spektralgebiete vorgestellt. Nun wollen wir uns der Anwendung dieser Laser in der Spektroskopie zuwenden. Dabei sollen zuerst solche Methoden behandelt werden, bei denen die spektrale Auflösung prinzipiell begrenzt ist durch die Linienbreiten der molekularen Übergänge. Diese Auflösungsgrenze wird auch tatsächlich erreicht, wenn die Frequenzbreite der Lichtquelle schmal ist gegenüber der Halbwertsbreite der Absorptionslinien. Da im allgemeinen im gasförmigen Zustand das Linienprofil molekularer Übergänge durch die Doppler-Breite bestimmt wird, spricht man bei diesen Methoden auch von Doppler-begrenzter Laser Spektroskopie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A. Giacchetti, R.W. Stanley, R. Zalubas: Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60, 474 (1970)

    Article  ADS  Google Scholar 

  2. 6.2 S. Gerstenkorn, P. Luc: Atlas du spectre d’absorption de la molecule d’iode (Edition du CNRS, 15 quai Anatole, Paris, France)

    Google Scholar 

  3. M. Gehrtz, G.C. Bjorklung, E. Wliittaker: Quantum limited laser frequency modulation spectroscopy. J. Opt. Soc. Am. B 2, 1510 (1985)

    Article  ADS  Google Scholar 

  4. D.G. Cameron, D.J. Moffat: A general approach to derivative spectroscopy. Appl. Spectr. 41, 539 (1987)

    Article  ADS  Google Scholar 

  5. K. Bergmann: Spectroscopic detection methods, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, London 1989)

    Google Scholar 

  6. R.A. Keller, J.C. Travis: Recent advances in analytical laser spectroscopy, in Analytical Laser Spectroscopy, ed. by N. Omenetto (Wiley, New York 1979)

    Google Scholar 

  7. W.F. Fairbanks, T.W. Hänsch, A.L. Schawlow: Absolute measurement of very low sodium vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)

    Article  ADS  Google Scholar 

  8. 6.8 Die historische Entwicklung mit entsprechenden Referenzen findet man in: HJ. Bauer: Son et lumière or the opto-aeoustic effect in multilevel systems. J. Chem. Phys. 57, 3130 (1972)

    Google Scholar 

  9. Yoh-Han Pao (ed.): Opto-acoustic Spectroscopy and Detection (Academic, New York 1977)

    Google Scholar 

  10. L.B. Kreutzer: Laser opto-acoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)

    Article  Google Scholar 

  11. S.D. Smith: High Resolution Infrared Spectroscopy, in Very High Resolution Spectroscopy, ed. by R.A. Smith (Wiley Interscience, New York 1970) p. 13

    Google Scholar 

  12. A.V. Burenin, A.F. Krupnov: Possibility of observing the rotational spectra of nonpolar molecules. Sov. Phys. JETP 40, 252 (1975)

    ADS  Google Scholar 

  13. G. Stella, J. Gelfand, W.H. Smith: Photoacoustic detection spectroscopy with dye laser excitation. Chem. Phys. Lett. 39, 146 (1976)

    Article  ADS  Google Scholar 

  14. A.M. Angus, E.E. Marinero, M.J. Colles: Opto-acoustic spectroscopy with a visible cw dye laser. Opt. Commun. 14, 223 (1975)

    Article  ADS  Google Scholar 

  15. A.C. Tam: Photoacoustics: Spectroscopy and other applications, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983) pp. 1–108

    Google Scholar 

  16. A. Rosencwaig: Photoacoustics and Photoacoustic Spectroscopy, Chemical Analysis Vol.57 (Wiley, New York 1980)

    Google Scholar 

  17. V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci., Vol.37 (Springer, Berlin, Heidelberg 1986)

    Book  Google Scholar 

  18. P. Hess, J. Pelzl (eds.): Phtoacoustic and Photolhermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  19. J.C. Murphy, J.W. Maclachlan Spicer, L.C. Aamodt, B.S.H. Royce (eds.): Phtoacoustic and Photothermal Phenomena II, Springer Ser. Opt. Sci., Vol.62 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  20. P. Hess (ed.): Photoacoustic, Photolhermal, and Photochemical Processes Gases, Topics Curr. Phys., Vol.46 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  21. G.S. Hurst, M.G. Payne, S.P. Kramer, J.P. Young: Resonance ionization spectroscopy and single atom detection. Rev. Mod. Phys. 51, 767 (1979)

    Article  ADS  Google Scholar 

  22. G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng: Counting the atoms. Physics Today 33, 24–29 (Sept. 1980)

    Article  Google Scholar 

  23. V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando, FL 1987)

    Google Scholar 

  24. D.H. Parker: Laser ionization spectroscopy and mass spectroscopy, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983) pp.233–310

    Google Scholar 

  25. P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Rüster, F. Ames, J. Bonn, H.J. Kluge, V. Krönert, E.W. Otten: Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)

    Article  ADS  Google Scholar 

  26. H. Rinneberg, J. Neukammer, G. Jönson, H. Hieronymus, A. König, K. Vietzke: Rydbergszustände mit hohen Hauptquantenzahlen in äußeren Feldern. Phys. Blätter 42, 347 (1986)

    Article  Google Scholar 

  27. J.A.C. Gallas, H. Walther, E. Werner Simple formulas for the ionization rate of Rydberg states in static electric fields: Phys. Rev. Lett 49, 867 (1982)

    ADS  Google Scholar 

  28. A.P. Hickmann, R.E. Olson, J. Pascale: Low energy collisions of Rydberg atoms with atoms and ions, in Rydberg States of Atoms and Molecules, ed. by R.F. Stebbings, F.B. Dunnings (Cambridge Univ. Press 1983)

    Google Scholar 

  29. D. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu: Use of space charge amplification techniques in the absorption spectroscopy of Cs and Cs2. Phys. Rev. A 8, 1666 (1973)

    Article  ADS  Google Scholar 

  30. K. Niemax: Spectroscopy using thermionic diode detectors. Appl. Phys. B 38, 1 (1985)

    Article  Google Scholar 

  31. R. Beigang, W. Makat, A. Timmermann: A thermionic ring diode for high res-ultion spectroscopy. Opt. Commun. 49, 253 (1984)

    Article  ADS  Google Scholar 

  32. R. Beigang, A. Timmermann: The thermionic annular diode: a sensitive detector for highly excited atoms and molecules. Laser and Optoelectr. 4, 252 (1984)

    Google Scholar 

  33. G.S. Hurst, M.G. Payne: Principles and Applications of Resonance Ionization Spectroscopy (Hilger, Bristol 1988)

    Google Scholar 

  34. D.S. King, P.K. Schenck: Optogalvanic spectroscopy. Laser Focus 14, 50 (März 1978)

    Google Scholar 

  35. J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Physics 22, 235 (1981)

    Article  ADS  Google Scholar 

  36. C. Dreze, Y. Demas, J.M. Gagué: Mechanistic study of the optogalvanic effect in hollow cathode discharge. J. Opt. Soc. Am. 72, 912 (1982)

    Article  ADS  Google Scholar 

  37. D. King, P. Schenck, K. Smith, J. Travis: Direct calibration of laser wavelength and bandwidth using the optocalvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)

    Article  ADS  Google Scholar 

  38. H.O. Behrens, G.H. Guthörlein, B. Hähner: Optogalvanische Spektroskopie. Laser und Optoektronik 14 27ff (1982), Heft 1

    Google Scholar 

  39. C.R. Webster, C.T. Rettner: Laser optogalvanic spectroscopy of molecules. Laser Focus 19, 41 (Febr. 1983)

    Google Scholar 

  40. D. Feldmann: Optogalvanic spectroscopy of some molecules in discharges: NH2, NO2, H2 and N2. Opt. Commun. 29, 67 (1979)

    Article  ADS  Google Scholar 

  41. J.C Travis: Analytical optogalvanic spectroscopy in flames, in Analytical Laser Spectroscopy, ed. by S. Martellucci, A. N. Chester (eds.) (Plenum, New York 1985) p.213

    Chapter  Google Scholar 

  42. T.E. Gough, G. Scoles: Optothermal infrared spectroscopy, in Laser Spectroscopy V, ed. by A.R.W. McKellar, T. Oka, B.P. Stoichef, Springer Ser. Opt. Sci., Vol. 30 (Springer, Berlin, Heidelberg 1981) p.337

    Chapter  Google Scholar 

  43. R.E. Miller: Infrared laser spectroscopy of molecular beams. PhD Thesis, University of Waterloo, Ontario (1980)

    Google Scholar 

  44. W. Brunner, H. Paul: On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)

    Article  ADS  Google Scholar 

  45. K. Tohma: Intracavity absorption of dye lasers. A rate equation model. J. Appl. Phys. 47, 1422 (1976)

    Article  ADS  Google Scholar 

  46. E.N. Antonov, V.G. Koloshnikov. V.R. Mironenko: Quantitiative measurement of small absorption coefficients in intracavity absoption spectroscopy by using a cw dye laser. Opt. Commun. 15, 99 (1975)

    Article  ADS  Google Scholar 

  47. G. Atkinson, T.N. Heimlich, M.W. Schuyler: Quantitiative intracavity laser detection of NO2 by optical multichannel analysis. J. Chem. Phys. 66, 5005 (1977)

    Article  ADS  Google Scholar 

  48. H. Atmanspacher, H. Scheingraber, C.R. Vidal: Dynamcis of laser intracavity absorption. Phys. Rev. A 32, 254 (1985)

    Article  ADS  Google Scholar 

  49. H. Atmanspacher: Resonatorinterne Absorption und nichtlineare Dynamic von Multimode-Lasersystemen. Dissertation, Universität München (1986) (Max-Planck-Institut für Extreterrestrische Physik, Garching, Report 197)

    Google Scholar 

  50. W.J. Childs, M.S. Fred, L.S. Goodman: Ultrasensitive detection of Cs vapor by intracavity laser quenching. Appl. Opt. 13, 2297 (1974)

    Article  ADS  Google Scholar 

  51. T.W. Hänsch, A.L.Schawlow, P. Toschek: Ultrasensitive response of a cw dye laser to selective extinction. IEEE J. , QE-8 802 (1972)

    Article  Google Scholar 

  52. G.H. Atkinson, A. Laufer, M. Kurylo: Detection of free radicals by an intracavity dye laser technique. J. Chem. Phys. 59, 350 (1973)

    Article  ADS  Google Scholar 

  53. R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry: Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213(1977)

    Article  ADS  Google Scholar 

  54. V.M. Baev, T.P. Belikova, E.A. Sviridenko, A.F. Suchkov: Intracavity laser spectroscopy with continuously and quasi continuously operating lasers. Sov. Phys. JETP 47, 21 (1978)

    ADS  Google Scholar 

  55. T.D. Harris: Laser intracavity enhanced spectroscopy, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983) pp.398–434

    Google Scholar 

  56. K.J. Button (ed.): Infrared and Submillimeter Waves (Academic, New York 1979)

    Google Scholar 

  57. K.M. Evenson, R.J. Saykally, D.A. Jennings, R.E. Curl, J.M. Brown: Far Infrared Laser Magnetic Resonance, in Chemical and Biochemical Applications of Lasers, ed. by C.B. Moore (Academic, New York 1980) Chap.V

    Google Scholar 

  58. K.M. Evenson, C.J. Howard: Laser magnetic resonance spectroscopy, in Laser Spectroscopy, ed. by R.G. Brewer, A. Mooradian (Plenum, New York 1974) p.535

    Chapter  Google Scholar 

  59. J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban: Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour center laser. App. Phys. B 26, 173 (1981)

    Article  ADS  Google Scholar 

  60. P.B. Davis, K.M. Evenson: Laser magnetic resonance spectroscopy of gaseous free radicals, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p. 132

    Chapter  Google Scholar 

  61. A. Hinz, J. Pfeiffer, W. Bohle, W. Urban: Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)

    Article  ADS  Google Scholar 

  62. Y. Ueda, K. Shimoda: Infrared laser Stark spectroscopy, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p. 186

    Chapter  Google Scholar 

  63. L.R. Zink, D.A. Jenning; K.M. Evenson, A. Sasso, M. Inguscio: New techniques in laser Stark spectroscopy. J. Opt. Soc. Am. B 4, 1173 (1987)

    Article  ADS  Google Scholar 

  64. M. Inguscio: Coherent atomic and molecular spectroscopy in the far infrared. Physics Scripta 37, 699 (1989)

    Article  ADS  Google Scholar 

  65. W.H. Weber, K. Tanaka, T. Kanaka (feature eds.): Stark and Zeeman techniques in laser spectroscopy. J. Opt. Soc. B 4, 1141 (1987)

    Article  ADS  Google Scholar 

  66. R.J. Saykally, R.C. Woods: High resolution spectroscopy of molecular ions. Ann. Rev. Phys. Chem. 32, 403 (1981)

    Article  ADS  Google Scholar 

  67. C.S. Gudeman, R.J. Saykally: Velocity modulation infrared laser spectroscopy of molecular ions. Ann. Rev. Phys. Chem. 35, 387 (1984)

    Article  ADS  Google Scholar 

  68. C.E. Blom. K. Müller, R.R. Filgueira: Gas discharge modulation using fast electronic swisches. Chem. Phys. Lett. 140, 489 (1987)

    Article  ADS  Google Scholar 

  69. M. Gruebele, M. Polak, R. Saykally: Velocity modulation laser spectroscopy of negative ions. The infrared spectrum of SH. J. Chem. Phys. 86, 1698 (1987)

    Article  ADS  Google Scholar 

  70. siehe z.B. G. Herzberg: Molecular Spectra and Molecular Structure, Vol.1 (van Nostrand Reinhold, New York 1950)

    Google Scholar 

  71. W. Demtröder, M. Stock: Molecular constants and potential curve of Na2 from laser-induced fluorescence. J. Mol. Spectrosc. 55, 476 (1975)

    Article  ADS  Google Scholar 

  72. K.L. Kompa: Chemical Lasers, Topics Curr. Chem., Vol.37 (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  73. P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare: Product state analysis of BaO from the reactions Ba+CO2 and Ba+O2. J. Chem. Phys. 61, 4450 (1974)

    Article  ADS  Google Scholar 

  74. J.G. Pruett, R.N. Zare: State-to-state reaction rates: Ba+HF (v=0,1) → BaF (v=0–12) + H″. J. Chem. Phys. 64, 1774 (1976)

    Article  ADS  Google Scholar 

  75. W. Demtröder, H.-J. Foth: Molekülspektroskopie in kalten Düsenstrahlen. Phys. Blätter 43, 7 (Jan. 1987)

    Article  ADS  Google Scholar 

  76. A.C. Hurley: Introduction to the Electron Theory of Small Molecules (Academic, New York 1979)

    Google Scholar 

  77. M. Raab, H. Weickenmeier, W. Demtröder: The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)

    Article  ADS  Google Scholar 

  78. J.L. Kinsey: Laser-induced fluorescence. Ann. Rev. Phys. Chem. 28, 349–372 (1977)

    Article  ADS  Google Scholar 

  79. L.J.R. Radziemski, R.W. Solunz, J.A. Paisnen (eds.): Laser Spectroscopy and its Application (Dekker, New York 1986)

    Google Scholar 

  80. S. Martellucci, A.N. Chester (eds.): Analytical Laser Spectroscopy (Plenum, New York 1985)

    Google Scholar 

  81. J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionisation techniques, in Laser Spectroscopy VIII, ed. by S. Svanberg, W. Pers-son, Springer Ser. Opt. Sci., Vol. 55 (Springer, Berlin, Heidelberg 1987) p.337

    Google Scholar 

  82. K.L. Kompa, J. Wanner (eds.): Laser Applications in Chemistry (Plenum, New York 1984)

    Google Scholar 

  83. J. Wolfrum (ed.): Laser diagnostics in combustion. Appl. Phys. B 50 (June 1990)

    Google Scholar 

  84. T.P. Hughes: Plasma and Laser Light (Hilger, Bristol 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1991). Doppler-begrenzte Absorptions- und Fluoreszenz- Spektroskopie mit Lasern. In: Laserspektroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08270-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08270-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08271-3

  • Online ISBN: 978-3-662-08270-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics