Skip to main content

Zeitaufgelöste Laserspektroskopie

  • Chapter
Laserspektroskopie
  • 112 Accesses

Zusammenfassung

Zur Untersuchung dynamischer Vorgänge in der Atom- und Molekülphysik (z.B. strahlende oder stoßinduzierte Zerfälle angeregter Niveaus, die zeitliche Entwicklung von Wellenfunktionen, der Verlauf chemischer Reaktionen, die Umordnung von Elektronenhüllen nach der Absorption von Photonen, usw.) braucht man eine zeitauflösende Spektroskopie, deren noch auflösbares Zeitintervall Δt klein ist gegen die Dauer T des zu untersuchenden Vorganges. Hier hat die Entwicklung ultrakurzer Laserpulse in den letzten Jahren die Möglichkeit geschaffen, sehr schnelle Vorgänge mit einer Zeitauflösung im Femtosekundenbereich (1 fs = 10-15 s) zu studieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. F. Früngel: Mikroskopie der Zeit. VDI-Zeitung 109, 157 (1967)

    Google Scholar 

  2. I.S. Marshak: Pulsed Light Sources (Consultants Bureau, New York 1984)

    Book  Google Scholar 

  3. P. Richter, J.D. Kimel, G.C. Moulton: Pulsed nitrogen laser: Dynamical UV behavior. Appl. Opt. 15, 756 (1976)

    Article  ADS  Google Scholar 

  4. D. Röss: Laser-Lichtverstärker und Oszillatoren (Akad. Verlagsgesellschaft, Frankfurt 1966)

    Google Scholar 

  5. D. Röss: Zum Problem der regelmäßigen Relaxationsimpulse von Kristallasern. Z. Naturforschung 22a, 822 (1967)

    ADS  Google Scholar 

  6. F.P. Schäfer (ed.): Dye Lasers, 3rd edn., Topics Appl. Phys., Vol.1 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  7. W. Kleen R. Müller: Laser (Springer, Berlin, Heidelberg 1969)

    Book  Google Scholar 

  8. E. Hartfield, B.J. Thompson: Optical modulators, in Handbock of Optics, ed. by W. Driscal, W. Vaugham (McGraw-Hill, New York 1974)

    Google Scholar 

  9. F.J. McClung, R.W. Hellwarth: Characteristics of giant optical pulsations from ruby. Proc. IEEE 51, 46 (1963)

    Article  Google Scholar 

  10. Spectra-Physics: Instruction Manual on Model 344S Cavity Dumper

    Google Scholar 

  11. A. Yariv: Quantum Electronics (Wiley, New York 1975)

    Google Scholar 

  12. P.W. Smith, M.A. Duguay, E.P. Ippen: Mode-locking of lasers. Progr. Quant. Electr. 3 (Pergamon, Oxford 1974)

    Google Scholar 

  13. P. Heinz, M. Fickenscher, A. Lauberau: Elektro-optic gain control and cavity dumping of a Nd: glass laser with active-passive mode-locking. Opt. Commun. 62, 343 (1987)

    Article  ADS  Google Scholar 

  14. M.S. Demokan: Mode-Locking in Solid State and Semiconductor-Lasers (Wiley, New York 1982)

    Google Scholar 

  15. W. Koechner: Solid-State Laser Engineering, 2nd edn., Springer Ser. Opt. Sci., Vol.1 (Springer, Berlin, Heidelberg 1988)

    Book  Google Scholar 

  16. C.V. Shank, E.P. Ippen: Mode-locking of dye lasers, in Dye Lasers, 3rd, edn., ed. by F.P. Schäfer (Springer, Berlin, Heidelberg 1990) Chapt.4

    Google Scholar 

  17. W. Rudolf: Die zeitliche Entwicklung von Mode-Locking-Pulsen aus dem Rauschen. Dissertation, Fachbereich Physik, Universität Kaiserslautern (1980)

    Google Scholar 

  18. W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Con-don-factors for the B→X system of Na2. J. Mol. Spectrosc. 61, 382 (1976)

    Article  ADS  Google Scholar 

  19. H.A. Haus: Waves and Fields in Optoelectronics (Prentice Hall, New York 1982)

    Google Scholar 

  20. B. Kopnarsky, W. Kaiser, K.H. Drexhage: New Ultrafast Saturable Absorbers for Nd: lasers. Opt. Commun. 32, 451 (1980)

    Article  ADS  Google Scholar 

  21. E.P. Ippen, C.V. Shank, A. Dienes: Passive mode-locking of the cw dye laser. Appl. Phys. Lett. 21, 348 (1972)

    Article  ADS  Google Scholar 

  22. G.R. Flemming, G.S. Beddard: cw mode-locked dye lasers for ultrashort spectroscopic studies. Opt. Laser Technol. 10, 257 (1978)

    Article  ADS  Google Scholar 

  23. D.J. Bradley: Methods of generations, in Ultrashort Light Pulses, ed. by S.L. Shapiro, Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  24. Ch.K. Chan: Synchroneously pumped dye lasers. Laser Technical Bulletin, Vol.8, Spectra Physics (June 1978)

    Google Scholar 

  25. J. Kuhl, H. Klingenberg, D. von der Linde: Picosecond and subpicosecond pulse generation in synchroneously pumped mode-locked cw dye lasers. Appl. Phys. 18, 279(1979)

    Article  ADS  Google Scholar 

  26. S.R. Rotman, C. Roxlo, D. Bebelaar, T.K. Yee, M.M. Salour: Generation, stabilization and amplification of subpicosecond pulses. Appl. Phys. B 28, 319 (1982)

    Article  ADS  Google Scholar 

  27. G.W. Fehrenbach, K.J. Gruntz, R.G. Ulbrich: Subpicosecond light pulses from synchronously pumped mode-locked dye lasers with composite gain and absorber medium. Appl. Phys. Lett. 33, 159 (1978)

    Article  ADS  Google Scholar 

  28. D. Kühlke, V. Herpers, D. von der Linde: Characteristics of a hybridly mode-locked cw dye laser. Appl. Phys. B 38, 233 (1985)

    Article  ADS  Google Scholar 

  29. R.H. Johnson: Characteristics of acousto-optic cavity dumping in a mode-locked laser. IEEE J. QE-9, 255 (1973)

    Article  Google Scholar 

  30. B. Couillaud, V. Fossati-Bellani: Modelocked Lasers and Ultrashort Pulses I, II. Laser and Applications, Vol.IV, No.1, 79, No.2, 91 (Jan., Feb. 1985)

    Google Scholar 

  31. R.L. Fork, C.H. BritoCruz, P.C. Becker, C.V. Shank: Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483 (1987)

    Article  ADS  Google Scholar 

  32. S. DeSilvestri, P. Laporta, V. Magni: Generation and applications of femtosecond laser-pulses. Europhysics News 17, 105 (Sept.1986)

    Google Scholar 

  33. D. Kühlke: Calculation of the colliding pulse mode locking in cw dye ring lasers. IEEE J. QE-19, 526 (1983)

    Article  Google Scholar 

  34. R.L. Fork, B.T. Greene, V.C. Shank: Generation of optical pulses shorter than 0.1 ps by colliding pulse mode locking. Appl. Phys. Lett. 38, 671 (1981)

    Article  ADS  Google Scholar 

  35. M.C. Nuss, R. Leonhardt, W. Zinth: Stable operation of a synchroneously pumped colliding pulse mode-locked ring dye laser. Opt. Lett. 10, 16 (1985)

    Article  ADS  Google Scholar 

  36. Siehe z B.: Berkeley Physik Kurs, Bd.3: Schwingungen und Wellen (Vieweg, Braunschweig 1973)

    Google Scholar 

  37. P.L. Kelley: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  38. D. Marcuse: Pulse distortion in single-mode fibers. Appl. Opt. 19, 1653 (1980)

    Article  ADS  Google Scholar 

  39. E.B. Treacy: Optical pulse compression with diffraction gratings. IEEE J. QE-5, 454 (1969)

    Article  Google Scholar 

  40. C.V. Shank, R.L. Fork, R. Yen, R.H. Stolen, W.J. Tomlinson: Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761 (1982)

    Article  ADS  Google Scholar 

  41. J.G. Fujiimoto, A.M. Weiners, E.P. Ippen: Generation and measurement of optical pulses as short as 16 fs. Appl. Phys. Lett. 44, 832 (1984)

    Article  ADS  Google Scholar 

  42. V.E. Zakharov, A.B. Shabat: Exact Theory of Two-Dimensional Self-Focussing and One-Dimensional Self-Modulation of Waves in Nonlinear Media. Sov. Phys. JETP 37, 823 (1973)

    ADS  Google Scholar 

  43. F.M. Mitschke: Solitonen in Glasfasern. Laser und Optoelektronik 4, 393 (1987)

    Google Scholar 

  44. L.F. Mollenauer, R.H. Stolen: The soliton laser. Opt. Lett. 9, 13 (1984)

    Article  ADS  Google Scholar 

  45. F.M. Mitschke, L.F. Mollenauer: Stabilizing the soliton laser. IEEE J. QE-22, 2242 (1986)

    Article  Google Scholar 

  46. F.M. Mitschke, L.F. Mollenauer: Ultrahort pulses from the soliton laser. Opt. Lett. 12, 407 (1987)

    Article  ADS  Google Scholar 

  47. W. Kaiser (ed.): Ultrashort Laser Pulses. Topics Appl. Phys., Vol.60 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  48. S.L. Shapiro (ed): Ultrashort Light Pulses. Topics Appl. Phys. Vol.18, (Springer 1977)

    Google Scholar 

  49. C.V. Shank, E.P. Ippen: Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Sov. Phys. JETP 34, 62 (1972)

    Google Scholar 

  50. R.L. Fork, C.V. Shank, R.T. Yen: Amplification of 70-fs optical pulses to Gigawatt powers. Appl.Phys.Lett. 41, 233 (1982)

    Article  ADS  Google Scholar 

  51. F.P. Schäfer: Neue Methoden zur Erzeugung von ultra-kurzen Laserimpulsen. Laser und Optoelektronik 16, 95 (1984)

    Google Scholar 

  52. A. Müller, Z. Bor: Farbstofflaser mit verteilter Rückkopplung zur Erzeugung von Pikosekunden-Impulsen. Laser und Optoelektronik 16, 187 (1984)

    Google Scholar 

  53. Photodioden (InGaAs-PIN-Dioden) mit Anstiegszeiten <25ps sind kommerziell erhältlich (z.B. Hamamatsu)

    Google Scholar 

  54. Hamamatsu: FESCA (Femtosecond Streak Camera (2908). Datenblatt (August 1986)

    Google Scholar 

  55. F.J. Leonberger, C.H. Lee, F. Capasso, H. Morkoc (eds.): Picosecond Electronics and Optoelectronics II, Springer Ser. Electron. Photon., Vol.24 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  56. C.H. Lee: Picosecond Optoelectronics Devices (Academic, New York 1984)

    Google Scholar 

  57. Hamamatsu: Datenblatt

    Google Scholar 

  58. D.J. Bowley: Measuring ultrafast pulses. Lasers and Optoelectronics 6, 81 (1987)

    Google Scholar 

  59. H.E. Rowe, T. Li: Theory of two-photon measurement of laser output. IEEE J. QE-6, 49(1970)

    Article  Google Scholar 

  60. H.P. Weber: Method for pulsewidth measurement of ultrashort light pulses, using nonlinear optics. J.Appl. Phys. 38, 2231 (1967)

    Article  ADS  Google Scholar 

  61. J.A. Giordmaine, P.M. Rentze, S.L. Shapiro, K.W. Wecht: Two-photon Excitation of fluorescence by picosecond light pulses. Appl.Phys.Lett. 11, 216 (1967); siehe auch [11.10]

    Article  ADS  Google Scholar 

  62. W.H. Glenn: Theory of the two-photon absorption-fluorescence method of pulsewidth measurement. IEEE. J. QE-6, 510 (1970)

    Article  Google Scholar 

  63. A. Unsöld, B. Baschek: Der Neue Kosmos, 4. Aufl. (Springer Berlin, Heidelberg 1988)

    Book  Google Scholar 

  64. J.R. Lakowicz, B.P. Maliwal: Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys.Chemistry 19, 13 (1984) und

    Article  Google Scholar 

  65. J.R. Lakowicz, B.P. Maliwal: Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys.J. 46, 463 (1984)

    Article  ADS  Google Scholar 

  66. R.E. Imhof, F.H. Read: Measurements of lifetimes of atoms, molecules and ions. Rep. Progr. Phys. 40, 1 (1977)

    Article  ADS  Google Scholar 

  67. D.V. O’Connor, D. Phillips: Time-Correlated Single-Photon Counting (Academic, New York 1989)

    Google Scholar 

  68. M.C.E. Huber, R.J. Sandeman: The measurement of oscillator strengths. Rep.Progr.Phys. 49, 397 (1986)

    Article  ADS  Google Scholar 

  69. J. Carlson: Accurate time resolved laser spectroscopy on sodium and bismuth atoms. Z.Phys.D 9, 147 (1988)

    Article  ADS  Google Scholar 

  70. W. Wien: Über Messungen der Leuchtdauer der Atome und der Dämpfung der Spektrallinien. Ann. der Physik 60, 597 (1919)

    Article  ADS  Google Scholar 

  71. P. Hartmetz, H.Schmoranzer: Lifetime and absolute transition probabilities of the 2P10 (3S1) level of Nel by beam-gas-dye laser spectroscopy. Z. Physik A 317, 1 (1984)

    Article  ADS  Google Scholar 

  72. D. Schulze-Hagenest, H. Harde, W. Brandt, W. Demtröder: Fast beam-spectroscopy by combined gas-cell laser excitation for cascade free measurements of highly excited states. Z. Physik A 282, 149 (1977)

    Article  ADS  Google Scholar 

  73. L. Ward, O. Vogel, A. Arnesen, R. Hallin, A. Wännström: Accurate experimental lifetimes of excited levels in NaII, SdII. Phys.Scripta 31, 149 (1985)

    Article  ADS  Google Scholar 

  74. H. Schmoranzer, P. Hartmetz, D. Marger, J. Dudda: Lifetime measurement of the B2Σ+ u (v=0) state of 14N2 + by the beam-dye-laser method. J.Phys. B 22, 1761 (1989)

    Article  ADS  Google Scholar 

  75. A. Lauberau, W. Kaiser: Picosecond investigations of dynamic processes in polyatomic molecules and liquids, in Chemical and Biochemical Applications of Lasers II, ed. by C.B. Moore (Academic, New York 1977)

    Google Scholar 

  76. W. Zinth, M.C. Nuss, W. Kaiser: A picosecond Raman-technique with resolution four times better than obtained by spontaneous Raman spectroscopy. [Ref.11.72c, S.91]

    Google Scholar 

  77. A. Seilmeier, W. Kaiser: Ultrashort intramolecular and intermolecular vibrational energy transfer of polyatomic molecules in liquids. Ref.[11.72c, S.279]

    Google Scholar 

  78. M. Dantus, M. Rosker, A.H. Zewail: Real-time-femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395 (1987)

    Article  ADS  Google Scholar 

  79. A.H. Zewail: Femtosecond transition-state dynamics. Faraday Discuss. Chem. Soc. 91, 1 (1991)

    Article  Google Scholar 

  80. Picosecond Phenomena (Springer Ser. Chem. Phys.) I, ed. by K.V. Shank, E.P. Ippen, S.L. Shapiro. Vol.4 (1978) II,

    Google Scholar 

  81. Picosecond Phenomena ed. by R.M. Hochstrasser, W. Kaiser, C.V. Shank. Vol.14 (1980) III,

    Google Scholar 

  82. Picosecond Phenomena ed. by K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Lauberau. Vol.38 (1982)

    Google Scholar 

  83. Picosecond PhenomenaUltrashort Phenomena (Springer Ser. Chem. Phys.) IV, ed. by D.H. Auston, K.B. Eisenthal. Vol.38 (1984) V,

    Google Scholar 

  84. Picosecond Phenomena ed. by G.R. Fleming, A.E. Siegman. Vol.46 (1986) VI,

    Google Scholar 

  85. Picosecond Phenomena ed. by T. Yajima, K. Yoshihara, C.B. Harris, S. Shionoya. Vol.48 (1988) VII,

    Google Scholar 

  86. Picosecond Phenomena ed. by E. Ippen, C.B. Harris, A.H. Zewail. Vol.53 (1990) VIII,

    Google Scholar 

  87. Picosecond Phenomena ed. by A. Migus, J.-L. Martin, G.A. Mourou, A.H. Zewail. Vol.55(1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1993). Zeitaufgelöste Laserspektroskopie. In: Laserspektroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08268-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08268-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08269-0

  • Online ISBN: 978-3-662-08268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics