Skip to main content

Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers

  • Chapter
Laser Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 5))

  • 407 Accesses

Abstract

After having presented in the previous chapter the different realizations of tunable lasers, we now discuss their applications in absorption and fluorescence spectroscopy. At first those methods where the spectral resolution is limited by the Doppler width of the molecular absorption lines will be treated. This limit can in fact be reached if the laser linewidth is small compared with the Doppler width. In several examples, such as optical pumping or laseri nduced fluorescence spectroscopy, mul timode 1 asers may be employed, al though in most cases single-mode lasers may be superior. In general, however, these lasers may not necessarily be frequency stabilized as long as the frequency jitter is small compared with the absorption linewidth. We compare several detection techniques of molecular absorption with regard to their sensitivity and their feasibility in the different spectral regions. Some examples illustrate the methods to give the reader a feeling of what has been achieved. After the discussion of the “Doppler-limited spectroscopy”, Chap.10 gives an extensive treatment of various techniques which allow sub-Doppler spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.M. Fairbanks, T.W. Hänsch, A.L. Schawlow: Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)

    ADS  Google Scholar 

  2. K.H. Becker, D. Haaks, T. Tartarczyk: Measurements of C2-radicals in flames with a tunable dye-laser. Z. Naturforsch. 29a, 829 (1974)

    ADS  Google Scholar 

  3. P.J. Dagdigian, H.W. Cruse, R.N. Zare: Laser fluorescence study of A10 formed in the reaction Al +02: Product state distribution, dissociation energy and radiative lifetime. J. Chem. Phys. 62, 1824 (1975)

    ADS  Google Scholar 

  4. References to the historical development can be found in H.J. Bauer: Son et lumière or the optoacoustic effect in multilevel systems. J. Chem. Phvs. 57, 3130 (1972)

    ADS  Google Scholar 

  5. Yoh-Han Pao(ed.): Optoacoustic Spectroscopy and Detection (Academic Press, New York 1977)

    Google Scholar 

  6. C. Forbes Dewey, Jr.: “Opto-Acoustic Spectroscopy”, in Impact of Lasers on Spectroscopy. Proc. Soc. Photo Opt. Instrum. Eng., Vol. 49 (1974) p. 13

    Google Scholar 

  7. C.K.N. Patel: Spectroscopic measurements of stratospheric nitric oxide and water vapor. Science 184, 1173 (1974)

    ADS  Google Scholar 

  8. A. Rosenwaig: The Spectraphone; Anal. Chem. 47, 592A (1975)

    Google Scholar 

  9. S.O. Kanstadt, P.E. Nordal: Photoacoustic and photothermal spectroscopy. Phys. Technol. 11, 142 (1980)

    ADS  Google Scholar 

  10. L.B. Kreutzer: Laser optoacoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)

    Google Scholar 

  11. W. Schnell, G. Fischer: Spectraphone measurements of isotopes of watervapor and nitricoxyde and of phosgene at selected wavelengths in the CO- and C02-laser region. Opt. Lett. 2, 67 (1978)

    ADS  Google Scholar 

  12. S.D. Smith: “High Resolution Infrared Spectroscopy”, in Ref. 1.14, p. 13

    Google Scholar 

  13. C.K.N. Patel: Use of vibrational energy transfer for excited-state opto-acoustic spectroscopy of molecules. Phys. Rev. Lett. 40, 535 (1978)

    ADS  Google Scholar 

  14. G. Stella, J. Gelfand, W.H. Smith: Photoacoustic detection spectroscopy with dye laser excitation. The 6190 Å CH4 and the 6450 NH3-bands. Chem. Phys. Lett. 39, 146 (1976)

    ADS  Google Scholar 

  15. A.M. Angus, E.E. Marinero, M.J. Colles: Opto-acoustic spectroscopy with a visible cw dye laser. Opt. Commun. 14, 223 (1975)

    ADS  Google Scholar 

  16. E.E. Marinero, M. Stuke: Quartz optoacoustic apparatus for highly corrosive gases. Rev. Sci. Instrum. 50, 31 (1979)

    Google Scholar 

  17. W. Brunner, H. Paul: On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)

    ADS  Google Scholar 

  18. K. Tohama: A simple model for intracavity absorption. Opt. Commun. 15, 17 (1975)

    ADS  Google Scholar 

  19. G.H. Atkinson, A. Laufer, M. Kurylo: Detection of free radicals by an intracavity dye laser technique. J. Chem. Phys. 59, 350 (1973)

    ADS  Google Scholar 

  20. W. Brunner, H. Paul: Theory of intracavity absorption spectroscopy. Opt. Quantum Electron. 10, 139 (1978)

    ADS  Google Scholar 

  21. E.M. Belenov, M.V. Danileiko, V.R. Kozubovskii, A.P. Nedavnii, M.T. Shpak: Ultrahigh resolution spectroscopy based on wave competition in a ring laser. Sov. Phys. JETP 44, 40 (1976)

    ADS  Google Scholar 

  22. E.A. Sviridenko, M.P. Frolov: Possible investigation of absorption line profiles by intracavity laser spectroscopy. Sov. J. Quantum Electron. 7, 576 (1977)

    ADS  Google Scholar 

  23. V.M. Baev, T.B. Belikova, E.A. Sviridenko, A.F. Suchkov: Intracavity laser spectroscopy with continuous and quasicontinuous lasers. Sov. Phvs. JETP 47, 21 (1978)

    ADS  Google Scholar 

  24. T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a cw-dve laser to selective extinction. IEEE QE-8, 802 (1972)

    Google Scholar 

  25. R.N.Zare: Laser separation of isotopes. Sci. Am., Feb. 1977, p. 86

    Google Scholar 

  26. R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry: Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213 (1977)

    ADS  Google Scholar 

  27. E.N. Antonov, V.G. Koloshnikov, V.R. Mironenko: Quantitative measurement of small absorption coefficients in intracavity absorption spectroscopy using a cw-dye laser. Opt. Commun. 15, 99 (1975)

    ADS  Google Scholar 

  28. K.C. Smith, P.K. Schenck: Opto galvanic spectroscopy of a neon discharge. Chem. Phys. Lett. 55, 466 (1978)

    ADS  Google Scholar 

  29. D.S. King, P.K. Schenck: Opto galvanic spectroscopy. Laser Focus 14, 50 (March 1978)

    Google Scholar 

  30. D. King, P. Schenck, K. Smyth, J. Travis: Direct calibration of laser wavelength and bandwidth using the opto galvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)

    ADS  Google Scholar 

  31. V. Kaufman, B. Edlin: Reference wavelength from atomic spectra in the range 15 Å to 25 000 Å. J. Phys. Chem. Ref. Data 3. 825 (1974)

    ADS  Google Scholar 

  32. A. Giacchetti, R.W. Stanley, R. Zalubas: Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60. 474 (1969)

    ADS  Google Scholar 

  33. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson,A.L. Schawlow: “Doppler free Opto Galvanic Spectroscopy”, in Ref. 1.11b, p. 188

    Google Scholar 

  34. W. Bridges: Characteristics of an opto-galvanic effect in cesium and other gas discharge plasmas. J. Opt. Soc. Am. 68, 352 (1978)

    MathSciNet  ADS  Google Scholar 

  35. P. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu: Use of space charge amplification techniques in the absorption spectroscopy of Cs and Cs2. Phys. Rev. A8, 1666 (1973)

    ADS  Google Scholar 

  36. H. Hotop: “Electron Spectrometric Studies of ionizing Thermal Energy Collisions Involving Excited States; Electronic and Atomic Collisions”, Proc. XI ICPEAC, Kyoto (North-Holland, Amsterdam 1979)

    Google Scholar 

  37. G.S. Hurst, M.H. Nayfeh, J.P. Young, M.G. Payne, L.W. Grossman: “Selective Single Atom Detection in a 1019 Atom Background”, in Ref. 1.11a, p. 44

    Google Scholar 

  38. G.S. Hurst, M.G. Payne, S.P. Kramer, J.P Young: Resonance ionization spectroscopy and one atom detection. Rev. Mod. Phys. 51, 767 (1979)

    ADS  Google Scholar 

  39. G.S. Hurst, M.G. Payne, S.D. Kramer, C.H. Chen : Counting the atoms. Physics Today 33, Sept. 1980, p.24–29

    Google Scholar 

  40. K.J. Button (ed.): Infrared and Subnillimeter Waves (Academic, New York 1979)

    Google Scholar 

  41. P.B. Davies, K.M. Evenson: “Laser Magnetic Resonance (LMR) Spectroscopy of Gaseous Free Radicals”, in Ref. 1.9, p. 132 ff

    Google Scholar 

  42. K.M. Evenson, C.J. Howard: “Laser Magnetic Resonance Spectroscopy”, in Ref. 1.8, p. 535

    Google Scholar 

  43. W. Urban, W. Herrmann: Zeeman modulation spectroscopy with spin-flip Raman laser. Appl. Phys. 17, 325 (1978)

    ADS  Google Scholar 

  44. Y. Ueda, K. Shimoda: “Infrared Laser Stark Spectroscopy”, in Ref. 1.9, p. 186 ff

    Google Scholar 

  45. K. Uehara, T. Shimizu, K. Shimoda: High resolution Stark spectroscopy of molecules by infrared and far infrared masers. IEEE J. QE-4, 728 (1968)

    Google Scholar 

  46. E.D. Hinkley: High-resolution infrared spectroscopy with a tunable diode laser. Appl. Phys. Lett. 16, 351 (1976)

    ADS  Google Scholar 

  47. E.D. Hinkley, K.W. Nill, F.A. Blum: “Infrared Spectroscopy with Tunable Lasers”, in Ref. 1.12, p. 127 ff

    Google Scholar 

  48. K.W. Nill: Spectroscopy with tunable diode lasers. Laser Focus 13, 32 (1977)

    ADS  Google Scholar 

  49. R.S. Eng, J.F. Butler, K.J. Linden: Tunable diode laser spectroscopy. Opt. Eng. 19, 945 (1980)

    ADS  Google Scholar 

  50. F. Allario, C.H. Bair, J.F. Butler: High resolution spectral measurements of SO2 from 1176.0 to 1265.8 cm -1 using a single PbSe laser with magnetic and current tuning. IEEE J. QE-11, 205 (1975)

    Google Scholar 

  51. G.P. Montgomery,lJ.C. Hill: High-resolution diode laser spectroscopy of the 949.2 cm band of ethylene. J. Opt. Soc. Am. 65, 579 (1975)

    ADS  Google Scholar 

  52. A.S. Pine: High-resolution methane V3-band spectra using a stabilized tunable difference-frequency laser system. J. Opt. Soc. Am. 66, 97 (1976)

    ADS  Google Scholar 

  53. À.S. Pine: “IR Spectroscopy Via Difference-Frequency Generation”, in Ref.1.11a, p. 376 ff

    Google Scholar 

  54. R.J. Butcher, R.B. Dennis, S.D. Smith: The tunable spin-flip Raman laser: Continuous wave molecular spectroscopy. Proc. Roy. Soc. London 344, 541 (1975)

    ADS  Google Scholar 

  55. C.K.N. Patel, R.J. Kerl: High resolution opto-acoustic spectroscopy of 15NO: A-doubling measurements. Opt. Commun. 24, 294 (1978)

    ADS  Google Scholar 

  56. T.J. Bridges, E.G. Burkhardt: Zeeman spectroscopy of NO with the magnetospectraphone. Opt. Commun. 22, 248 (1977)

    ADS  Google Scholar 

  57. R.W. Field, D.O. Harris, T. Tanaka: Continuous wave dye laser excitation spectroscopy CaF A2Πr -X2Σ+l. J. Mol. Spectrosc. 57, 107 (1975)

    ADS  Google Scholar 

  58. J.M. Green, J.P. Hohimer, F.K. Tittel: A high-resolution cw dye laser spectrometer. Opt. Commun. 9, 407 (1973)

    ADS  Google Scholar 

  59. R.A. Beaudet, K.G. Weyer, H. Walther: Photoexcitation spectroscopy of B02 with a single frequency dye laser. Chem. Phys. Lett. 60, 486 (1979)

    ADS  Google Scholar 

  60. R.A. Bernheim: Optical Pumping, an Introduction (Benjamin, New York 1965)

    Google Scholar 

  61. B. Budick: “Optical Pumping Methods in Atomic Spectroscopy”, in Advances in Atomic and Molecular Physics, Vol. 3, ed. by D. R. Bates, I. Esterman (Academic Press, New York 1967) p. 73

    Google Scholar 

  62. R.N. Zare: “Optical Pumping of Molecules”, in Ref. 1.7, p. 29

    Google Scholar 

  63. W. Happer: Optical pumping. Rev. Mod. Phys. 44, 169 (1972)

    ADS  Google Scholar 

  64. C. Cohen-Tannoudji: “Optical Pumping with Lasers”, in Atomic Physics, Vol. 4, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum Press, New York 1975)

    Google Scholar 

  65. B. Decomps, M. Dumont, M. Ducloy: “Linear and Nonlinear Phenomena in Laser Optical Pumping”, in Ref. 1.12, p. 284 ff

    Google Scholar 

  66. M. Broyer, G. Gouedard, J.C. Lehmann, J. Vigue: “Optical Pumping of Molecules”, in Advances in Atomic and Molecular Physics, Vol. 12, ed. by D.R. Bates, B. Bederson (Academic Press, New York 1976)

    Google Scholar 

  67. C. Schütte: The Theory of Molecular Spectroscopy (North-Holland, Amsterdam 1976)

    Google Scholar 

  68. G. Herzberg: Molecular Spectra and Molecular Structure, Vol. I (Van Nostrand, New York 1950)

    Google Scholar 

  69. G. Höning, M. Cjajkowski, M. Stock, W. Demtröder: High resolution laser spectroscopy of Cs2. J. Chem. Phys. 71, 2138 (1979)

    ADS  Google Scholar 

  70. R. Rydberg: Graphische Darstellung einiger bandenspektroskopischer Ergebnisse. Z. Phys. 73, 376 (1932)

    ADS  Google Scholar 

  71. O. Klein: Zur Berechnung von Potentialkurven zweiatomiger Moleküle mit Hilfe von Spektraltermen. Z. Phys. 76, 226 (1938)

    ADS  Google Scholar 

  72. A.L.G. Rees: The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc., London A59, 998 (1947)

    ADS  MATH  Google Scholar 

  73. R.N. Zare, A.L. Schmeltzkopf, W.J. Harrop, D.L. Albritton: J. Mol. Spectrosc. 46, 37 (1973)

    ADS  Google Scholar 

  74. G. Ennen, Ch. Ottinger: Laser fluorescence measurements of the 7 LiD (X1Σ+)-potential up to high vibrational quantum numbers. Chem. Phys. Lett. 36, 16 (1975)

    ADS  Google Scholar 

  75. A.G. Gaydon: Dissociation Energies and Spectra of Diatomic Molecules. (Chapman and Hall, London 1968)

    Google Scholar 

  76. W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and FranckCondon factors for the B1Πu-→X1Σg -system of Na2. J. Mol. Spectrosc. 61, 382 (1976)

    ADS  Google Scholar 

  77. E.J. Breford, F. Engelke: Laser induced in nozzle beams: Applications to the NaK D1 Π-→X1 Σ and D1 Π-a3Σ E systems. Chem. Phys. Lett. 53, 282 (1978); J. Chem. Phys. 71, 1949 (1979)

    ADS  Google Scholar 

  78. H. Scheingraber, C.R Vidal: “Discrete and Continuous Franck-Condon Factors of the Mg2 A1Σu-→X1Σg+ System and Their J-dependence”, Third Summer Colloq. on Electronic Transition Lasers, Snowmass Village, 1976 (MIT Press, London 1977)

    Google Scholar 

  79. J. Tellinghuisen, G. Pichler, W.L. Snow, M.E. Hillard, R.J. Exton: Analysis of the diffuse bands near 6100 Å in the fluorescence spectrum of Cs2. Chem. Phys. 50, 313 (1980)

    Google Scholar 

  80. C.A. Brau, J.J. Ewing: “Spectroscopy, Kinetics and Performance of Rare Gas Halide Lasers”, in Electronic Transition Lasers, ed. by J.I. Steinfeld (MIT Press, Cambridge, Mass. 1976)

    Google Scholar 

  81. D. Eisel, D. Zevgolis, W. Demtröder: Sub-Doppler laser spectroscopy of the NaK-molecule. J. Chem. Phys. 71, 2005 (1979)

    ADS  Google Scholar 

  82. E.V. Condon: Nuclear motions associated with electronic transitions in diatomic molecules. Phys. Rev. 32, 858 (1928)

    ADS  MATH  Google Scholar 

  83. J. Tellinghuisen: The McLennan bands of I2: A highly structured continuum. Chem. Phys. Lett. 29, 359 (1974)

    ADS  Google Scholar 

  84. J.L. Kinsey: Laser-induced fluorescence. Ann. Rev. Phys. Chem. 28, 349 (1977)

    ADS  Google Scholar 

  85. K.L. Kompa: Chemical Lasers, Topics in Current Chemistry, Vol. 37 (Springer, Berlin, Heidelberg, New York 1975)

    Google Scholar 

  86. R.W.F. Gross, J.B. Scott (eds.): Handbook of Chemical Lasers (Wiley Interscience, New York 1976)

    Google Scholar 

  87. D.H. Levy, L. Wharton, R.E. Smalley: “Laser Spectroscopy in Supersonic Jets”, in Chemical and Biochemical Applications of Lasers, Vol. 2, ed. by C.B. Moore (Academic Press, New York 1977) p. 1

    Google Scholar 

  88. J.B. Anderson: “Molecular Beams”, in Molecular Beams and Low Density Gas—Dynamics, ed. by P. Wegener (Dekker, New York 1974)

    Google Scholar 

  89. R.E. Smalley, L. Wharton, D.H. Levy: The fluorescence excitation spectrum of rotationally cooled NO2. J. Chem. Phys. 63, 4977 (1975)

    ADS  Google Scholar 

  90. P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare: Product state analysis of Ba0 from the reactions Ba+CO2 and Ba+O2. J. Chem. Phys. 61, 4450 (1974)

    ADS  Google Scholar 

  91. J.G. Pruett, R.N. Zare: State-to-state reaction rates: Ba+HF(v=0,1) -→BaF(v=0–12)+H. J. Chem. Phys. 64, 1774 (1976)

    ADS  Google Scholar 

  92. A. Schultz, A. Siegel: Intern. Conf. Phys. Electr. At. Coll., Paris 1977, Abstracts of Papers (Comissariat A L’Energie Atomique, Paris 1977)

    Google Scholar 

  93. D.L. Rousseau, P.F. Williams: Discrete and diffuse emission following two photon excitation of the E-state in molecular iodine. Phys. Rev. Lett. 33, 1369 (1974)

    ADS  Google Scholar 

  94. J. Tellinghuisen: E→B structured continuum in I2. Phys. Rev. Lett. 34, 1137 (1975)

    ADS  Google Scholar 

  95. S.A. Edelstein, T.F. Gallagher: “Rydberg Atoms”, in Advances in Atomic and Molecular Physics, Vol. 14, ed. by D.R. Bates, B. Bederson (Academic Press, New York 1978)

    Google Scholar 

  96. C.J. Latimer: Recent experiments involving highly excited atoms. Contemporary Physics 20, 631 (1979)

    ADS  Google Scholar 

  97. G. Leuchs, H. Walther: “Investigation of the Fine Structure Splitting of Rydberg States”, in Ref.1.11a, p.299

    Google Scholar 

  98. J.A. Paisner, R.W. Solarz, E.F. Worden: “Identification of Rydberg States in the Atomic Lanthanides and Actinides”, in Ref.1.11a, p.161

    Google Scholar 

  99. Th.W. Ducas, M.L. Zimmerman: Infrared Stark spectroscopy of sodium Rydberg states. Phys. Rev. A15, 1523 (1977)

    ADS  Google Scholar 

  100. K. Fredrikson, S. Svanberg: Stark interaction for excited states in alkali atoms, investigated by laser spectroscopy. Z. Physik A281, 189 (1977)

    ADS  Google Scholar 

  101. J. Farley, P. Tsekeris, R. Gupta: “Hyperfine-structure measurements in the Rydberg S and P-states of rubidium and cesium. Phys. Rev. A15, 1530 (1977)

    ADS  Google Scholar 

  102. G. zu Putlitz: “Determination of Nuclear Moments with Optical Double Resonance”, in Springer Tracts in Modern Physics, Vol. 37 (Springer. Berlin Heidelberg, New York 1965) p. 105

    Google Scholar 

  103. H.G. Weber, Ph. Brucat, W. Demtröder, R.N. Zare: Measurement of NO2 2B2-state g-values by optical radiofrequency double-resonance. J. Mol. Spectrosc. 75, 58 (1979)

    ADS  Google Scholar 

  104. G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in rubidium. Phys. Scr. 13, 351 (1976)

    ADS  Google Scholar 

  105. C.H. Townes, A.L. Schawlow: Microwave Spectroscopy (Dover, New York 1975)

    Google Scholar 

  106. K. Shimoda: “Infrared-Microwave Double-Resonance”, in Ref.1.11a, p.279

    Google Scholar 

  107. K. Shimoda: “Double Resonance Spectroscopy by Means of a Laser”, in Ref. 1.12, p. 197

    Google Scholar 

  108. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, P.A. Jennings: Microwave optical double resonance spectroscopy with a cw dye laser: Ba0 XlΣ and AlE. J. Chem. Phys. 59, 2191 (1973)

    ADS  Google Scholar 

  109. F.K. Klein: Diplomthesis, Fachbereich Physik, Univ. Kaiserslautern 1977

    Google Scholar 

  110. M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identification of absorption lines by modulated lower level population: Spectrum of Na2. Phys. Rev. Lett. 36, 671 (1976)

    ADS  Google Scholar 

  111. M. Göppert-Mayer: Ober Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273 (1931)

    Google Scholar 

  112. W. Kaiser, C.G. Garret: Two photon excitation in Ca F2:Eu2+. Phys. Rev. Lett. 7, 229 (1961)

    ADS  Google Scholar 

  113. N. Bloembergen, M.D. Levenson: “Doppler-Free Two Photon Absorption Spectroscopy”, in Ref. 1.13, p. 315

    Google Scholar 

  114. P. Bräunlich: “Multiphoton Spectroscopy”, in Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum Press, New York 1978)

    Google Scholar 

  115. J.M. Worlock: “Two Photon Spectroscopy”, in Laser Handbook, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972)

    Google Scholar 

  116. R.M. Hochstraßer, J.E. Wessel, H.N. Sung: Two-photon excitation spectrum of benzene in the gas phase and the crystal. J. Chem. Phys. 60, 317 (1974)

    ADS  Google Scholar 

  117. L. Wunsch, H.J. Neusser, E.W. Schlag: Two photon excitation spectrum of benzene and benzene-d6 in the gas phase. Chem. Phys. Lett. 31, 433 (1975) ; 32, 210 (1975)

    ADS  Google Scholar 

  118. R.G. Bray, R.M. Hochstraßer, H.N. Sung: Two photon excitation spectra of molecular gases: New results for benzene and nitricoxide. Chem. Phys. Lett. 33, 1 (1975)

    ADS  Google Scholar 

  119. L. Wunsch, H.J. Neusser, E.W. Schlag: Polarization effects in the rotational structure of two-photon spectra in the gas phase. Chem. Phys. Lett. 38, 216 (1976)

    ADS  Google Scholar 

  120. S.V. Filseth, R. Wallenstein, H. Zacharias: Two photon excitation of CO (A1Π) and N2 (alΠg). Opt. Commun. 23, 231 (1977)

    ADS  Google Scholar 

  121. F.H. Faisal, R. Wallenstein, H. Zacharias: Three photon excitation of xenon and carbon monoxide. Phys. Rev. Lett. 39, 1138 (1977)

    ADS  Google Scholar 

  122. D. Popescu, C.B. Collins, B.W. Johnson, I. Popescu: Multiphoton excitation and ionization of atomic cesium with a tunable dye laser. Phys. Rev. A9, 1182 (1974)

    ADS  Google Scholar 

  123. P. Esherik, J.J. Wynne, J.A. Armstrong: “Multiphoton Ionization Spectroscopy of the Alkaline Earths”, in Ref. 1.11a, p. 170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1981). Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers. In: Laser Spectroscopy. Springer Series in Chemical Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08257-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08257-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08259-1

  • Online ISBN: 978-3-662-08257-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics