Skip to main content

Producer Self-Protection—Immunity

  • Chapter
Lantibiotics and Related Peptides

Abstract

Microbial producers of antibiotic substances which also possess the target molecule for the antibiotic attack are forced to develop self-protection mechanisms. For example, penicillin-producing Penicillium strains are fungi which do not have a bacterial, peptidoglycan-based cell wall. Therefore, they lack the peptidoglycanpolymerizing penicillin-binding proteins and consequently do not need any protection system. In contrast, Streptomycetaceae producing streptomycin or tetracycline share the target (the bacterial ribosome) with many other bacterial species and require particular precautions to avoid the toxic effects of the antibiotic that they are producing. In such cases, the most common mechanisms are either to keep the antibiotic inactive as long as it is inside the cells, e.g., by a modification that can easily be removed or reversed outside the cell, or to slightly alter the target molecule such that its function is not impaired, but that its affinity for the antibiotic is lost. Alternatively, and sometimes even additionally, cells have protein pumps which keep the intracellular concentrations of these potentially lethal products at low levels. Indeed, such protection mechanisms are supposed to represent the ancestors of resistance mechanisms, which developed independently from antibiotic production and spread out in bacterial communities. Currently, the dramatic increase in bacterial resistance among clinical isolates is viewed as the most serious threat to the concept of antibacterial chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James R, Lazdunski C, Pattus F, eds. Bacteriocins, Microcins and Lantibiotics. Berlin: Springer, 1992.

    Google Scholar 

  2. Reis M, Eschbach-Bludau M, Iglesias-Wind MI et al. Producer immunity towards the lantibiotic Pep5: Identification of the immunity gene 7 and localization and functional analysis of its gene product. Appl Environ Microbiol 1994; 60: 2876–2883.

    PubMed  CAS  Google Scholar 

  3. Ersfeld-Dreßen H, Sahl H-G, Brandis H. Plasmid involvement in production of and immunity to the staphylococcin-like peptide Peps. J Gen Microbiol 1984; 130: 3029–3035.

    PubMed  Google Scholar 

  4. Kuipers OP, Beerthuyzen MM, Siezen RJ et al. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisi genes for producer immunity. Eur J Biochem 1993; 216: 281–292.

    Article  PubMed  CAS  Google Scholar 

  5. Klein C, Entian K-D. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 1994; 60: 2793–2801.

    PubMed  CAS  Google Scholar 

  6. Qiao M, Ye S, Koponen O et al. Regulation of the nisin operons in Lactococcus lactis N8. J Appl Bacteriol 1996; 80: 626–634.

    Article  PubMed  CAS  Google Scholar 

  7. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 1995; 270: 27299–27304.

    Article  PubMed  CAS  Google Scholar 

  8. Dodd HM, Horn N, Chan WC et al. Molecular analysis of the regulation of nisin immunity. Microbiology 1996; 142: 2385–2392.

    Article  PubMed  CAS  Google Scholar 

  9. Ra SR, Qiao M, Immonen T et al. Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 1996; 142: 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  10. Saris PEJ, Immonen T, Reis M et al. Immunity to lantibiotics. Antonie van Leeuwenhoek 1996; 69: 151–159.

    Article  PubMed  CAS  Google Scholar 

  11. Siegers K, Entian K-D. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 1995; 61: 1082–1089.

    PubMed  CAS  Google Scholar 

  12. Peschel A, Götz F. Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. J Bacteriol 1996; 178: 531–536.

    PubMed  CAS  Google Scholar 

  13. Siezen RI, Kuipers OP, de Vos WM. Comparison of lantibiotic gene clusters and encoded proteins. Antonie van Leeuwenhoek 1996; 69: 171–184.

    Article  PubMed  CAS  Google Scholar 

  14. Duan K, Harvey ML, Liu C-Q et al. Identification and characterization of a mobilizing plasmid, pND3oo, in Lactococcus lactis M189 and its encoded nisin resistance determinant. J Appl Bacteriol 1996; 81: 493–500.

    PubMed  CAS  Google Scholar 

  15. Fath MJ, Kolter R. ABC-transporters: bacterial exporters. Microbiol Rev 1993; 57: 995–1017.

    PubMed  CAS  Google Scholar 

  16. Rodriguez-Sainz MC, Hernandez-Chico C, Moreno F. Molecular characterization of pmbA, an Escherichia coli chromosomal gene required for the production of the antibiotic peptide MccB17. Molec Microbiol 1990; 4: 1921–1932.

    Article  CAS  Google Scholar 

  17. Garrido MC, Herrero M, Kolter R et al. The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBO J 1988; 7: 1853–1862.

    PubMed  CAS  Google Scholar 

  18. Sahl HG, Brandis H. Mode of action of the staphylococcin-like peptide Pep5 and culture conditions affecting its activity. Zentralbl Bakteriol Mikrobiol Hyg I. Abtl Orig A 1982; 252: 166–175.

    CAS  Google Scholar 

  19. Jack RW, Tagg JR. Factors affecting the production of the group A streptococcus bacteriocin SA-FF22. J Med Microbiol 1992; 36: 132–138.

    Article  PubMed  CAS  Google Scholar 

  20. Sahl HG, Hahn C, Brandis H. Interaction of the staphylococcin-like peptide PeP5 with cell walls and isolated cell wall components of Gram-positive bacteria. Zbl Bakt Hyg A 1985; 260: 197–205.

    CAS  Google Scholar 

  21. Sahl HG, Ersfeld-Dressen H, Bierbaum G et al. Different mechanisms of insensitivity to the staphylococcin-like peptide Peps. Zbl Bakt Hyg A 1987; 267: 173–185.

    CAS  Google Scholar 

  22. Froseth BR, McKay LL. Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl Environ Microbiol 1991; 57: 804–811.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jack, R.W., Bierbaum, G., Sahl, HG. (1998). Producer Self-Protection—Immunity. In: Lantibiotics and Related Peptides. Biotechnology intelligence unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08239-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08239-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08241-6

  • Online ISBN: 978-3-662-08239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics