Skip to main content

Chemistry and Structure

  • Chapter
  • 85 Accesses

Part of the book series: Biotechnology intelligence unit ((BIOIU))

Abstract

While the existence of nisin had been identified as early as 19281 and subtilin was discovered in 1944,2 it was several decades before researchers were able to gain some clues as to the nature of the inhibitory activity which they were observing. It had often been hypothesized that nisin, subtilin and similar inhibitory activities could be used in the then relatively new field of antibiosis as chemotherapeutics; for example, studies were performed suggesting that nisin might have efficacy in the treatment of veterinary diseases such as mastitis in dairy herds.3–6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rogers LA, Whittier EO. Limiting factors in lactic fermentations. J Bacteriol 1928; 16: 211–214.

    PubMed  CAS  Google Scholar 

  2. Jansen EF, Hirschmann DJ. Subtilin-an antibacterial product of Bacillus subtilis: culturing conditions and properties. Arch Biochem 1944; 4: 297–304.

    CAS  Google Scholar 

  3. Hurst A. Nisin. Adv Appl Microbiol 1981; 27: 85–123.

    Article  CAS  Google Scholar 

  4. Delves-Broughton J, Blackburn P, Evans RJ et al. Applications of the bacteriocin nisin. Antonie van Leeuwenhoek 1996; 69: 193–202.

    Article  PubMed  CAS  Google Scholar 

  5. Delves-Broughton J. Nisin and its uses as a food preservative. Food Technol 1990; 44: 100–112.

    CAS  Google Scholar 

  6. Molitor E, Sahl H-G. Applications of nisin: a literature survey. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 434–439.

    Google Scholar 

  7. Berridge NJ, Newton GG, Abraham EP. Purification and nature of the antibiotic nisin. Biochem J 1952; 52: 529–535.

    PubMed  CAS  Google Scholar 

  8. Gross E, Kiltz HH, Nebelin E. Subtilin. VI. Die Struktur des Subtilins. H-Z Z Physiol Chem 1973; 354810–812.

    Google Scholar 

  9. Gross E, Morell JL. The structure of nisin. J Am Chem Soc 1971; 93:4634–4635.

    Google Scholar 

  10. Gross E. a,ß-unsaturated and related amino acids in peptides and proteins. Adv Exp Med Biol B 1977; 86: 131–153.

    Google Scholar 

  11. Jung G. Lantibiotics-ribosomally synthesised biologically active polypeptides containng sulphide rings and a,ß-didehydroamino acids. Angew Chem Intl Ed Engl 1991; 30: 1051–1068.

    Article  Google Scholar 

  12. Jung G. Lantibiotics: a survey. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 1–34.

    Google Scholar 

  13. Bierbaum G, Sahl H-G. Lantibiotics-unusually modified bacteriocin-like peptides from Gram-positive bacteria. Zbl Bakt 1993; 278: 1–22.

    CAS  Google Scholar 

  14. Sahl H-G, Jack RW, Bierbaum G. Lantibiotics: Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 1995; 230: 827–853.

    Article  PubMed  CAS  Google Scholar 

  15. Jack RW, Götz F, Jung G. Lantibiotics. In: Reehm H-J, Reed, G eds. Biotechnology vol 7. Weinheim: Verlag Chemie, 1997; 323–368.

    Chapter  Google Scholar 

  16. Jack RW, Bierbaum G, Heidrich C et al. The genetics of lantibiotic biosynthesis. BioEssays 1995; 17: 793–802.

    CAS  Google Scholar 

  17. Jack RW, Tagg JR, Ray B. Bacteriocins of Gram-positive bacteria. Microbiol Rev 1995; 59: 171–200.

    PubMed  CAS  Google Scholar 

  18. Jack RW, Sahl H-G. Unique postranslational modifications involved in lantibiotic biosynthesis. Trends Biotechnol 1995; 13: 269–278.

    Article  PubMed  CAS  Google Scholar 

  19. Meyer HE, Heber M, Eisermann B, et al. Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal-Biochem. 1994; 223(14:185–90.

    Google Scholar 

  20. Meyer HE. Analysing posttranslational protein modifications. In: Kellner R, Lottspeich F, Meyer HE eds. Microcharacterization of Proteins. Weinheim: Verlag Chemie, 1994.

    Google Scholar 

  21. Skaugen M, Nissen-Meyer J, Jung G et al. In vivo conversion of L-serine to D-alanine in a ribosomally synthesised polypeptide. J Biol Chem 1994; 269: 27183–27185.

    PubMed  CAS  Google Scholar 

  22. Shiba T, Wakamiya T, Fukase K et al. The chemistry of lanthionine-containing peptides. Biopolymers 1986; 25: S11 - S19.

    CAS  Google Scholar 

  23. Wakamiya T, Fukase K, Sano A et al. Studies on synthesis of the lanthionine peptide nisin. In: Jung G, Sahl H-G, eds. Nisin and Novel Lantibioties. Leiden: ESCOM Scientific Publishers BV, 1991: 189–203.

    Google Scholar 

  24. Chan W-C, Lian L-Y, Bycroft BW et al. Isolation and charactersation of two degradation products derived from the peptide antibiotic nisin. FEBS Letts 1989; 252: 29–36.

    Article  CAS  Google Scholar 

  25. Rollema HS, Both P, Siezen RJ. NMR and activity studies of nisin degradation products. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers By, 1991: 123–130.

    Google Scholar 

  26. Rollema HS, Metzger JW, Both P et al. Eur J Biochem 1996; 241: 716–722.

    Article  PubMed  CAS  Google Scholar 

  27. Mulders JWM, Boerrigter IJ, Rollema HS et al. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 1991; 201: 581–584.

    Article  PubMed  CAS  Google Scholar 

  28. de Vos WM, Mulders JWM, Siezen RJ et al. Properties of nisin Z and distribution of its gene nisZ in Lactococcus lactis. Appl Environ Microbiol 1993; 59: 213–218.

    PubMed  Google Scholar 

  29. Chan WC, Bycroft BW, Leyland ML et al. A novel posttranslational modification of the peptide antibiotic subtilin: isolation and characterisation of a natural variant from Bacillus subtilis ATCC 6633. Biochem J 1993; 291: 23–27.

    PubMed  CAS  Google Scholar 

  30. Hansen JN, Chung YJ, Liu W et al. Biosynthesis and mechanism of action of ni-sin and subtilin. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 287–302.

    Google Scholar 

  31. Liu W, Hansen JN. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J Biol Chem 1992; 267: 25078–25085.

    PubMed  CAS  Google Scholar 

  32. Hansen JN. Antibiotics synthesized by posttranslational modification. An Rev Microbiol 1993; 47: 535–64.

    Article  CAS  Google Scholar 

  33. van de Ven FJM, van den Hooven HW, Konings RNH et al. NMR-studies of lantibiotics: the structure of nisin in aqueous solution. Eur J Biochem 1991; 202: 1181–1188.

    Article  PubMed  Google Scholar 

  34. van de Ven FJM, van den Hooven HW, Konings RNH et al. The spatial structure of nisin in aqueous solution. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers By, 1991: 35–42.

    Google Scholar 

  35. Goodman M, Palmer DE, Mierke D et al. Conformations of nisin and its fragments using synthesis, NMR and computer simulations. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991; 59–75.

    Google Scholar 

  36. Palmer DE, Mierke DF, Pattaroni C et al. Interactive NMR and computer simulation studies of lanthionine-ring structures. Biopolymers 1989; 28: 397–408.

    Article  PubMed  CAS  Google Scholar 

  37. Chan WC, Lian L-Y, Bycroft BW et al. Confirmation of the complete structure of nisin by ‘H-NMR resonance assignments in aqueous and dimethylsulphoxide solution. J Chem Soc Perkin Trans 1989; 12359–2367.

    Google Scholar 

  38. Chan WC, Bycroft BW, Leyland ML et al. Sequence-specific resonance assignment and conformational analysis of subtilin by 2D-NMR. FEBS Letts 1992; 300: 56–62.

    Article  CAS  Google Scholar 

  39. Lian L-Y, Chan WC, Morley SD et al. Solution structures of nisin and its two major degradation products determined by NMR. Biochem J 1992; 283: 413–420.

    PubMed  CAS  Google Scholar 

  40. Lian L-Y, Chan WC, Morley SD et al. NMR studies of the solution structure of nisin A. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers By, 1991: 43–58.

    Google Scholar 

  41. Schnell N, Entian K-D, Schneider U et al. Prepeptide sequence of epidermin, a ribosomally synthesised antibiotic with four sulphide rings. Nature (London) 1988; 333: 276–278.

    Article  CAS  Google Scholar 

  42. Allgaier H, Jung G, Werner RG et al. Epidermin: sequencing of a heterodet tetracyclic z1-peptide amide antibiotic. Eur J Biochem1986; 160: 9–22.

    Google Scholar 

  43. Kupke T, Stevanovic S, Sahl H-G et al. Purification and characterisation of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol 1992; 1745354–5361.

    Google Scholar 

  44. Kupke T, Kempter C, Gnau V et al. Mass spectrometric analysis of a novel enzymatic reaction. Oxidative decarboxylation of the lantibiotic precursor peptide EpiA catalyzed by the flavoprotein EpiD. J Biol Chem 1994; 269: 5653–5659.

    PubMed  CAS  Google Scholar 

  45. Kupke T, Kempter C, Jung G et al. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J Biol Chem 1995; 270: 11282–11289.

    Article  PubMed  CAS  Google Scholar 

  46. Altena K, Bierbaum G, Sahl H-G. Unpublished results.

    Google Scholar 

  47. Sahl HG. Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from Gram-positive bacteria. Appl Environ Microbiol 1994; 60: 752–755.

    PubMed  CAS  Google Scholar 

  48. Kellner R, Jung G, Homer T et al. Gallidermin, a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 1988; 177: 53–59.

    Article  PubMed  CAS  Google Scholar 

  49. Ungermann V, Goeke K, Fiedler H-P et al. Optimization of fermentation and purification of gallidermin and epidermin. In: Sahl H-G, Jung G. eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers, 1991: 410–421.

    Google Scholar 

  50. Allgaier H, Walter J, Schlüter M et al. Strategy for the purification of lantibiotics. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics Leiden: ESCOM Scientific Publishers, 1991: 422–433.

    Google Scholar 

  51. Israil AM, Jack RW, Jung G et al. Isolation of a new epidermin variant from two strains of Staphylococcus epidermidis-frequency of lantibiotic production in coagulase-negative staphylococci. Zentralbi Bakteriol 1996; 284: 285–296.

    Article  CAS  Google Scholar 

  52. Freund S, Jung G, Gutbrod 0 et al. The solution structure of the lantibiotic gallidermin. Biopolymers 1991; 31: 803–811.

    Article  PubMed  CAS  Google Scholar 

  53. Freund S, Jung G, Gutbrod 0 et al. The three-dimensional solution structure of gallidermin determined by NMR-based molecular graphics. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 91–102.

    Google Scholar 

  54. Freund S, Jung G. Lantibiotics: an overview and conformational studies on gallidermin and Peps. In: James R, Lazdunski C, Pattus F eds. Bacteriocins, Microcins and Lantibiotics. Berlin: Springer, 1992: 75–92.

    Chapter  Google Scholar 

  55. Kellner R, Jung G, Josten M et al. Peps: structure elucidation of a large lantibiotic. Angew Chem Int Ed Engl 1989; 28: 616–619.

    Article  Google Scholar 

  56. Kellner R, Jung G, Sahl H-G. Structure elucidation of the tricyclic lantibiotic Peps containing eight positively charged amino acids. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers, 1991: 141–158.

    Google Scholar 

  57. Kaletta C, Entian K-D, Kellner R et al. Peps, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch Microbiol 1989; 152: 16–19.

    Article  PubMed  CAS  Google Scholar 

  58. Freund S, Jung G, Gibbons WA et al. NMR and circular dichroism studies on Peps. In: Jung G, Sahl H-G eds. Nisin and novel lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 103–112.

    Google Scholar 

  59. Heidrich C, Pag U, Josten M et al. Isolation, characterization and sequence of the novel lantibiotic epicidin 280 and its biosynthetic gene cluster. (submitted).

    Google Scholar 

  60. van de Kamp M, Horstink LM, van den Hooven HW et al. Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Eur J Biochem 1995; 227757–771.

    Google Scholar 

  61. van de Kamp M, van de Ven FJM, Konings RNH et al. Elucidation of the primary structure of the peptide lantibiotic epilancin K7 from Staphylococcus epidermidis: cloning of the epilancin K7-encoding gene and Edman degradation of the mature peptide. Eur J Biochem 1995; 230: 587–600.

    Article  PubMed  Google Scholar 

  62. Tagg JR, Dajani AS, Wannamaker LW et al. Group A streptococcal bacteriocin: production, purification and mode of action. J Exp Med 1973; 138: 1168–1183.

    Article  PubMed  CAS  Google Scholar 

  63. Tagg JR, Read RSD, McGiven AR. Bacteriocin of group A streptococcus: Partial purification and properties. Atimicrob Agents Chemother 1973 4: 214–221.

    Article  Google Scholar 

  64. Jack RW, Tagg JR. Factors affecting the production of the group A streptococcus bacteriocin SA-FF22. J Med Microbiol 1992; 36: 132–138.

    Article  PubMed  CAS  Google Scholar 

  65. Jack RW, Carne A, Metzger J et al. Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur J Biochem 1994; 220: 455–462.

    Article  PubMed  CAS  Google Scholar 

  66. Jack RW, Tagg JR. Isolation and partial structure of streptococcin A-FF22. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers, 1991: 171–179.

    Google Scholar 

  67. Piard J-C, Kuipers OP, Rollema HS et al. Structure, organization and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J Biol Chem 1993; 268: 16361–16368.

    PubMed  CAS  Google Scholar 

  68. Piard J-C, Muriana PM, Desmazeaud MJ et al. Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subspp. lactis CNRZ 481. Appl Environ Microbiol 1992; 58: 279–284.

    PubMed  CAS  Google Scholar 

  69. Rince A, Dufour A, Le Pogam S et al. Cloning, expression and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from Lactococcus lactis. Appl Environ Microbiol 1994; 60: 1652–1657.

    PubMed  CAS  Google Scholar 

  70. Ross KF, Ronson CW, Tagg JR. Isolation and characterization of the lantibiotic salavaricin A and its structural gene salA from Streptococcus salivarius 2oP3. Appl Environ Microbiol 1993; 59: 2014–2021.

    PubMed  CAS  Google Scholar 

  71. Pridmore D, Rekhif N, Pittet AC et al. Variacin, a new lanthionine-containing bacteriocin produced by Micrococcus virians: comparison to lacticin 481 of Lactococcus lactis. Appl Environ Microbiol 1996; 62: 1799–1802.

    PubMed  CAS  Google Scholar 

  72. van den Hooven HW, Lagerwerf FM, Heerma W et al. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: location of the thioether bridges. FEBS Lett 1996; 391: 317–322.

    Article  PubMed  Google Scholar 

  73. Kaiser D, Jack RW, Jung G. Unpublished results.

    Google Scholar 

  74. Gilmore MS, Segarra RA, Booth MC et al. Genetic structure of the Enterococcus faecalis plasmid pADi-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 1994; 176: 7335–7344.

    PubMed  CAS  Google Scholar 

  75. Booth MC, Bogie CP, Sahl H-G et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 1996; 21: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  76. Stoffels G, Nissen-Meyer J, Gudmudsdottir A et al. Purification and characterization of a new bacteriocin isolated from a Carnobacterium spp. Appl Environ Microbiol 1992; 58: 1417–1422.

    PubMed  CAS  Google Scholar 

  77. Stoffels G, Gudmundsdottir A, Abee T. Membrane-associated proteins encoded by the nisin gene cluster may function as a recepetor for the lantibiotic carnocin UI49. Microbiology 1994; 140: 1443–1450.

    Article  PubMed  CAS  Google Scholar 

  78. Novak J, Caulfield PW, Miller EJ. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mu tans. J Bacteriol 1994; 176: 4316–4320.

    PubMed  CAS  Google Scholar 

  79. Novak J, Kirk M, Caulfield PW et al. Detection of modified amino acids in the lantibiotic peptide mutacin II by chemical derivitization and electrospray ionisation-mass spectroscopic analysis. Anal Biochem 1996; 236: 358–360.

    Article  PubMed  CAS  Google Scholar 

  80. Chikindas ML, Novak J, Driessen AJM et al. Mutacin II, a bactericidal lantibiotic from Streptococcus mutans. Antimicrob Agents Chemother 1995; 39: 2656–2660.

    Article  PubMed  CAS  Google Scholar 

  81. Benedict, RG, Dvonch W, Shotwell OL et al. Cinnamycin, an antibiotic from Streptomyces cinnamoneous nov. sp. Antibiot Chemother 1952; 2: 591–594.

    CAS  Google Scholar 

  82. Fredenhagen A, Fendrich G, Märki F et al. Duramycins B and C, two new lanthionine-containing antibiotics as inhibitors of phospholipase A2. J Antibiot 1990; 43: 1403–1412.

    Article  PubMed  CAS  Google Scholar 

  83. Fredenhagen A, Märki F, Fendrich G et al. Duramycin B and C, two new lanthionine-containing antibiotics as inhibitors of phospholipase Az and structural revision of duramycin and cinnamycin, In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 131–140.

    Google Scholar 

  84. Kessler H, Steuernagel S, Gillessen D et al. Complete sequence determination and localisation of one imino and three sulphide bridges of the nonadecapeptide Ro 09–0198 by homonuclear 2D-NMR spectroscopy: the DQF-RELAYED-NOESY-experiment. Helv Chim Acta 1987; 70: 726–741.

    Article  CAS  Google Scholar 

  85. Kessler H, Steuernagel S, Will M et al. The structure of the polycylic nonadecapeptide Ro 09–0198. Helv Chim Acta 1988; 71: 1924–1929.

    Article  CAS  Google Scholar 

  86. Kessler H, Seip S, Wein T et al. Structure of cinnamycin (Ro 09–0198) in solution. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 141–158.

    Google Scholar 

  87. Naruse N, Tenmyo O, Tornita K et al. Lanthiopeptin, a new peptide antibiotic. Production, isolation and properties of lanthiopeptin. J Antibiot 1990; 42: 837–845.

    Article  Google Scholar 

  88. Shotwell OL, Stodola FH, Michael WR et al. Antibiotics against plant disease III. Duramycin, a new antibiotic from Streptomyces cinnmonmeus forma azacoluta. J Am Chem Soc 1958; 80i3912–3915.

    Google Scholar 

  89. Wakamiya T, Fukase K, Naruse N et al. Lanthiopeptin, a new peptide effective against Herpes simplex virus: structural determination and comparison with Ro 09–0198, an immunopotentiating peptide. Tetrahedron Lett 1988; 29: 4771–4772.

    Article  CAS  Google Scholar 

  90. Wakamiya T, Ueki Y, Shiba T et al. The structure of ancovenin, a new peptide inhibitor of angiotensin I-converting enzyme. Tetrahedron Lett 1985; 26: 665–668.

    Article  CAS  Google Scholar 

  91. Nishikawa M, Teshima T, Wakamiya T et al. Chemistry of lantibiotics. In: Shiba T, Sakakibara S eds. Peptide Chemistry 1987. Osaka: Protein Research Foundation, 1988: 71–74.

    Google Scholar 

  92. Zimmermann N, Freund S, Fredenhagen A et al. Solution structures of the lantibiotics duramycin B and C. Eur J Biochem 1993; 216: 419–428.

    Article  PubMed  CAS  Google Scholar 

  93. Brötz H, Bierbaum G, Markus A et al. Mode of action of mersacidin-inhibition of peptidoglycan synthesis via a novel mechanism? Antimicrob Agents Chemother 1995; 39: 714–719.

    Article  PubMed  Google Scholar 

  94. Brötz H, Bierbaum G, Reynolds R et al. The lantiiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 1997; 246: 193–199.

    Article  PubMed  Google Scholar 

  95. Chatterjee S, Chatterjee S, Lad SJ, et al. Mersacidin, a new antibiotic from Bacillus: fermentation, isolation, purification and chemical characterisation. J Antibiot 1992; 45: 832–838.

    Article  PubMed  CAS  Google Scholar 

  96. Chatterjee S, Chatterjee DK, Rani RH et al. Mersacidin, a new antibiotic from Bacillus: in vitro and in vivo antibacterial activity. J Antibiot 1992; 45: 839–845.

    Article  PubMed  CAS  Google Scholar 

  97. Kogler H, Bauch M, Fehlhaber H-W, et al. NMR-spectroscopic investigations on mersacidin. In: Jung G, Sahl H-G eds. Nisin and Novel Lantibiotics. Leiden: ESCOM Scientific Publishers BV, 1991: 159–170.

    Google Scholar 

  98. Parenti F, Pagani H, Beretta G. Gardimycin, a new antibiotic from Actinoplanes I. Description of the producer strain and fermentation studies. J Antibiot 1976; 24: 501–506.

    Article  Google Scholar 

  99. Malabaraba A, Landi M, Pallanza R et al. Physicochemical and biological properties of actagardine and some acid hydrolysis products. J Anitbiot1985; 38: 1506–1511.

    Google Scholar 

  100. Malabaraba A, Pallanza R, Berti M et al. Synthesis and biological activity of some amide derivatives of the lantibiotic actagardine. J Antibiot 1990; 43: 1089–1097.

    Article  Google Scholar 

  101. Kettenring J, Malabaraba A, Vekey K et al. Sequence determination of actagardine, a novel lantibiotic, by homonuclear 2D NMR spectroscopy. J Antibiot 1990; 43: 1082–1088.

    Article  PubMed  CAS  Google Scholar 

  102. Zimmermann N, Metzger JW, Jung G. The tetracyclic lantibiotic actagardine. ‘H-NMR and ’3C-NMR assignments and revised primary structure. Eur J Biochem 1995; 228: 786–797.

    Article  PubMed  CAS  Google Scholar 

  103. Somma S, Merati W, Parenti F. Gardamycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob Agents Chemother 1977; 11: 396–401.

    Article  PubMed  CAS  Google Scholar 

  104. Zimmermann N, Jung G. The three-dinmensional solution structure of the lantibiotic murein-biosynthesis-inhibitor actagardine determined by NMR. Eur J Biochem 1997; 246: 809–819.

    Article  PubMed  CAS  Google Scholar 

  105. Prasch T, Naumann T, Markert RLM et al. Constitution and solution conformation of the antibiotic mersacidin determined by NMR and molecular dynamics. Eur J Biochem 1997; 244: 501–512.

    Article  PubMed  CAS  Google Scholar 

  106. Komiyama K, Otoguro K, Segawa T et al. A new antibiotic cypemycin: taxonomy, fermentation, isolation and characteristics. J Antibiot 1993; 46: 1666–1671.

    Article  PubMed  CAS  Google Scholar 

  107. Minami Y, Yoshida K-I, Azuma R et al. Structure of cypemycin, a new peptide antibiotic. Tetrahedron Lett 1994; 35: 8001–8004.

    Google Scholar 

  108. Herrero M, Morreno P. Microcin B17 blocks DNA replication and induces the SOS system in Escherichia coli. J Gen Microbiol 1986; 21: 381–386.

    Google Scholar 

  109. Bayer A, Freund S, Nicholson G et al. Postranslational backbone modifications form heteroaromatic five-membered rings during the synthesis of the glycine rich antibiotic microcin B17. Angew Chem Int Ed Engl 1993; 32: 1336–1339.

    Article  Google Scholar 

  110. Bayer A, Freund S, Jung G. Postranslational heterocyclic backbone modifications in the 43-peptide antibiotic microcin B17, structure elucidation and NMR study of a ‘3C, ’5N-labelled gyrase inhibitor. Eur J Biochem 1995; 234: 414–426.

    Article  PubMed  CAS  Google Scholar 

  111. Yorgey P, Davagnino J, Kolter R. The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol Microbiol 1993; 9897–905.

    Google Scholar 

  112. Videnov G, Kaiser D, Kempter C et al. Synthesis of naturally-occuring, conformationally-restricted oxazole-and thiazole-containing di-and tripeptide mimetics. Angew Chem Int Ed Engl 1996; 35: 1503–1506.

    Article  CAS  Google Scholar 

  113. Videnov G, Kaiser D, Kempter C et al. Synthesis of the DNA gyrase inhibitor microcin B17, a 43-peptide antibiotic with eight heteroaromatic rings in the backbone. Angew Chem Int Ed Engl 1996; 35: 1506–1508.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jack, R.W., Bierbaum, G., Sahl, HG. (1998). Chemistry and Structure. In: Lantibiotics and Related Peptides. Biotechnology intelligence unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08239-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08239-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08241-6

  • Online ISBN: 978-3-662-08239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics