Skip to main content

Activation of Single AMPA- and NMDA-Type Glutamate-Receptor Channels

  • Chapter
Book cover Ionotropic Glutamate Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

In real life, the thing that matters about glutamate receptors is their response to the brief pulse of agonist (glutamate) that is released by a presynaptic nerve during synaptic transmission. The brief nature of this pulse makes it likely that postsynaptic channels will experience only a single activation (see below). The receptor is not at equilibrium, and it is the rate at which it works that controls its physiological properties. The study of rates (kinetics) is, therefore, crucial to the understanding of physiology. For some purposes, an empirical description of how things are observed to change is quite sufficient, and such empirical descriptions may be described appropriately as models; but, in order to understand how the receptor actually works, this is not good enough. For this purpose, we must aim to describe the receptor in terms of physical realities. The states in a kinetic mechanism must not be convenient abstractions but actual physical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR (1976) Drug blockade of open end-plate channels. J Physiol 260: 531–552

    PubMed  CAS  Google Scholar 

  • Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expres-sion of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347: 150–160

    Article  PubMed  CAS  Google Scholar 

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306: 436–441

    Article  PubMed  CAS  Google Scholar 

  • Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol 235: 655–691

    PubMed  CAS  Google Scholar 

  • Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic and permeation properties of AMPA receptors in single neocortical non-pyramidal cells. J Neurosci 17: 6685–6696

    PubMed  CAS  Google Scholar 

  • Anson LC, Chen PE, Wyllie DJA, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2 A subunit which control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18: 581–598

    PubMed  CAS  Google Scholar 

  • Ascher P, Bregestovski P, Nowak L (1988) N-methyl-D-aspartate-activated channels ofmouse central neurones in magnesium-free solutions. J Physiol 399: 207–226

    PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter.Neuron 11: 401–407

    CAS  Google Scholar 

  • Baker AJ, Zornow MH, Scheller MS, Yaksh TL, Skilling SR, Smullin DH, Larson AA, Kuczenski R (1991) Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem 57: 1370–1379

    Article  PubMed  CAS  Google Scholar 

  • Béhé P, Stern P, Wyllie DJA, Nassar M, Schoepfer R, Colquhoun D (1995) Determination of the NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc R Soc Lond B 262: 205–213

    Article  Google Scholar 

  • Benveniste M, Mayer ML (1991) A kinetic analysis of antagonist action at NMDA receptors: two binding sites each for glutamate and glycine. Biophysical J 59: 560–573

    Article  CAS  Google Scholar 

  • Benveniste M, Mayer ML (1995) Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J Physiol 483: 367–384

    PubMed  CAS  Google Scholar 

  • Blahos J, Wenthold RJ (1996) Relationship between N-Methyl-D-aspartate receptor NR1 splice variants and NR2 subunits. J Biol Chem 271: 15669–15674

    Article  PubMed  CAS  Google Scholar 

  • Blatz AL, Magleby KL (1989) Adjacent interval analysis distinguishes among gating mechanisms for the fast chloride channel from rat skeletal muscle. J Physiol 410: 561–585

    PubMed  CAS  Google Scholar 

  • Bochet P, Audinat E, Lambolez B, Crépel F, Rossier J, Iino M, Tsuzuki K, Ozawa S (1994) Subunit composition at the single-cell level explains the functional properties of a glutamate-gated channel. Neuron 12: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Buller AL, Monaghan DT (1997) Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. Eur J Pharmacol 320: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Chazot PL, Coleman SK, Cik M, Stephenson FA (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J Biol Chem 269: 24403–24409

    PubMed  CAS  Google Scholar 

  • Chazot PL, Stephenson FA (1997) Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2 A, and NR2B subunits within the same complex. J Neurochem 69: 2138–2144

    Article  PubMed  CAS  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of x-1: A developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15: 64986508

    Google Scholar 

  • Clements JD, Feltz A, Sahara Y, Westbrook GL (1998) Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J Neurosci 18: 119–127

    PubMed  CAS  Google Scholar 

  • Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-d-aspartate receptor. Neuron 7: 605–613

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D (1998) Binding, gating, affinity and efficacy. The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125: 923–948

    Article  Google Scholar 

  • Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ionchannel openings and of clusters of bursts. Phil Trans R Soc Lond B 300: 1–59

    Article  CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1987) A note on correlations in single ion channel records.Proc R Soc Lond B 230: 15–52

    CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1995a) The principles of the stochastic interpretation of ion channel mechanisms. In Single channel recording, Sakmann B and Neher pp 397–482 Plenum Press, New York

    Google Scholar 

  • Colquhoun D, Hawkes AG (1995b) Desensitization of N-methyl-D-aspartate recep- tors: a problem of interpretation. Proc Natl Acad Sci USA 92: 10327–10329

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Hawkes AG, Srodzinski K (1996) Joint distributions of apparent open times and shut times of single ion channels and the maximum likelihood fitting of mechanisms. Phil Trans R Soc Lond A 354: 2555–2590

    Article  Google Scholar 

  • Colquhoun D, Hawkes AG, Merlushkin A, Edmonds B (1997) Properties of single ion channel currents elicited by a pulse of agonist concentration or voltage. Phil Trans R Soc Lond A 355: 1743–1786

    Article  Google Scholar 

  • Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol 458: 261–287

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol 369: 501557

    Google Scholar 

  • Colquhoun D, Sigworth FJ (1995) Analysis of single ion channel data. In Single channel recording, Sakmann B and Neher E pp 483–587 Plenum Press, New York

    Google Scholar 

  • Cull-Candy SG, Farrant M, Feldmeyer D (1995) NMDA channel conductance: a user’s guide. In Excitatory Amino Acids and Synaptic Transmission, eds Wheal HV and Thomson AM pp 121–132 Academic Press Limited

    Google Scholar 

  • Cull-Candy SG, Howe JR, Ogden DC (1988) Noise and single-channels activated by excitatory amino acids in rat cultured cerebellar granule cells. J Physiol 400: 189–222

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurones. Nature 325: 525–528

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Usowicz MM (1989) On the multiple conductance channels activated by excitatory amino acids in large cerebellar neurones of the rat. J Physiol 415: 555–582

    PubMed  CAS  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3 A. Nature 393: 377–381

    Article  PubMed  CAS  Google Scholar 

  • Didier M, Xu M, Berman SA, Bursztajn S (1995) Differential expression and co-assembly of NMDA zeta 1 and epsilon subunits in the mouse cerebellum during postnatal development. Neuroreport 6: 2255–2259

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The Structure of the Potassium channel: Molecular Basis of K+ Conduction and Selectivity. Science 280: 69–77

    Google Scholar 

  • Dunah AW, Luo J, Wang YH, Yasuda RP, Wolfe BB (1998) Subunit composition of NMethyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol Pharmacol 53: 429–437

    PubMed  CAS  Google Scholar 

  • Durand GM, Gregor P, Zheng X, Bennett MVL, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-asparate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89: 9359–9363

    Article  PubMed  CAS  Google Scholar 

  • Dzubay JA, Jahr CE (1996) Kinetics of NMDA channel opening. J Neurosci 16: 4129–4134

    PubMed  CAS  Google Scholar 

  • Edmonds B, Colquhoun D (1992) Rapid decay of averaged single-channel NMDA receptor activations recorded at low agonist concentration. Proc R Soc Lond B 250: 279–286

    Article  CAS  Google Scholar 

  • Edmonds B, Gibb AJ, Colquhoun D (1995) Mechanisms of activation of muscle nicotinic acetylcholine receptors, and the time course of endplate currents. Ann Rev Physiol 57: 469–493

    Article  CAS  Google Scholar 

  • Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Feltz A, Trautmann A (1982) Desensitization at the frog neuromuscular junction: a biphasic process. J Physiol 322: 257–272

    PubMed  CAS  Google Scholar 

  • Ferrer-Montiel AV, Montai M (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci USA 93: 2741–2744

    Article  PubMed  CAS  Google Scholar 

  • Fredkin DR, Montai M, Rice JA (1985) Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Le Cam, L. M. and Olshen, R. A., pp 269–289, Wadsworth, Monterey

    Google Scholar 

  • Geiger JRP, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca’ permeability of AMPA receptors in principal neurons and inter neurons in rat CNS. Neuron 15: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Gibb AJ, Colquhoun D (1991) Glutamate activation of a single NMDA receptor-channel produces a cluster of openings. Proc R Soc Lond B 243: 39–45

    Article  CAS  Google Scholar 

  • Gibb AJ, Colquhoun D (1992) Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J Physiol 456: 143–179

    PubMed  CAS  Google Scholar 

  • Gibb AJ, Kojima H, Carr JA, Colquhoun D (1990) Expression of cloned receptor sub-units produces multiple receptors. Proc R Soc Lond B 242: 108–112

    Article  CAS  Google Scholar 

  • Götz T, Kraushaar U, Geiger J, Lübke J, Berger T, Jonas P (1997) Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 17: 204–215

    PubMed  Google Scholar 

  • Greengard P, Jen J, Nairn AC, Stevens CF (1991) Enhancement of the glutamate response by cAMP dependent protein kinase in hippocampal neurons. Science 253: 1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Hawkes AG, Jalali A, Colquhoun D (1992) Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Phil Trans R Soc Lond B 337: 383–404

    Article  CAS  Google Scholar 

  • Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294: 462–464

    Article  PubMed  CAS  Google Scholar 

  • Häusser M, Roth A (1997) Dendritic and somatic glutamate receptors channels in rat cerebellar Purkinje cells. J Physiol 501: 77–95

    Article  PubMed  Google Scholar 

  • Hestrin S (1993) Different glutamate receptors channels mediate fast excitatory synap- tic currents in inhibitory and excitatory cortical neurons. Neuron 11: 1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Colquhoun D, Cull-Candy SG (1988) On the kinetics of large-conductance glutamate-receptor ion channels in rat cerebellar granule neurons. Proc R Soc Lond B 233: 407–422

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Cull-Candy SG, Colquhoun D (1991) Currents through single glutamate-receptor channels in outside-out patches from rat cerebellar granule cells. J Physiol 432: 143–202

    PubMed  CAS  Google Scholar 

  • Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the Nmethyl-D-aspartate receptor subunit NR1: Identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc Natl Acad Sci USA 93: 6031–6036

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the e (epsilon) 4 subunit of the NMDA receptor channel. FEBS Letters 313: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836–2843

    PubMed  CAS  Google Scholar 

  • Jackson MB (1986) Kinetics of unliganded acetylcholine receptor channel gating. Biophys J 49: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255: 4702–4255

    Article  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472: 615–663

    PubMed  CAS  Google Scholar 

  • Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H (1994) Differences in Ca’ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Activation of Single AMPA- and NMDA-Type Glutamate-Receptor Channels 215

    Google Scholar 

  • Jonas P, Sakmann B (1992) Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol 455: 143–171

    PubMed  CAS  Google Scholar 

  • Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirements for glycine in activation of NMDAreceptors expressed in Xenopus oocytes. Science 241: 835–837

    Article  PubMed  CAS  Google Scholar 

  • Kleckner NW, Pallotta BS (1995) Burst kinetics of single NMDA receptor currents in cell-attached patches from rat brain cortical neurons in culture. J Physiol 486: 411–426

    PubMed  CAS  Google Scholar 

  • Köhr G, Eckardt S, Luddens H, Monyer H, Seeburg PH (1994) NMDA receptor chan- nels: subunit-specific potentiation by reducing agents. Neuron 12: 1031–1040

    Article  PubMed  Google Scholar 

  • Köhr G, Seeburg PH (1996) Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol 492: 445–452

    PubMed  Google Scholar 

  • Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1998) N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20: 317–327

    Article  PubMed  CAS  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: Structural similarity with bacterial amino acid-binding proteins. Neuron 12: 1291–1300

    Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36–41

    Article  PubMed  CAS  Google Scholar 

  • Labarca P, Rice JA, Fredkin DR, Montal M (1985) Kinetic analysis of channel gating: application to the cholinergic receptor channel and the chloride channel from Torpedo californica. Biophys J 47: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Lambolez B, Audinat E, Bochet P, Crépel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 93: 1797–1802

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for tetrameric structure of recombinant NMDA receptors. J Neurosci 18: 2954–2961

    PubMed  CAS  Google Scholar 

  • Läuger P (1983) Conformational transitions of ionic channels. In Single Channel Recording, eds. Sakmann, B and Neher, E, pp 177–189, Plenum Press, New York.

    Google Scholar 

  • Läuger P (1985) Ionic channels with conformational substates. Biophys J 47:581–591

    Article  Google Scholar 

  • Leff P, Dougall IG ( 1993 ) Further concerns over Cheng-Prusoff analysis. Trends Pharmacol Sci 14:110–112

    Article  PubMed  CAS  Google Scholar 

  • Lester RAJ, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346: 565–567

    Article  PubMed  CAS  Google Scholar 

  • Lester RAJ, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12: 635–643

    PubMed  CAS  Google Scholar 

  • Lewis TM, Harkness PC, Sivilotti LG, Colquhoun D, Millar NS (1997) The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. J Physiol 505: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schoepfer R, Rees M (1998) Properties of human glycine receptors containing the hyperekplexia mutation a1(K276 E), expressed in Xenopus oocytes. J Physiol 507: 25–40

    Article  PubMed  CAS  Google Scholar 

  • Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca’-dependent phosphatase. Nature 369: 235–239

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch LS (1989) Testing fractal and Markov models of ion channel kinetics. Biophys J 55: 373–377

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Stevens CF (1994) Both open and closed NMDA receptor channels desensitize. J Neurosci 14: 2153–2160

    PubMed  CAS  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JRP, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266: 1709–1713

    Article  PubMed  CAS  Google Scholar 

  • Lummis SCR, Fletcher EJ, Green T (1998) NMDA receptor NR2 subunits contain amino acids involved in glutamate binding. J Physiol 506P: 76 P

    Google Scholar 

  • MacDonald JF, Mody I, Salter MW (1989) Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol 414: 17–34

    PubMed  CAS  Google Scholar 

  • MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel Nature 350: 232–235

    CAS  Google Scholar 

  • Magleby KL, Weiss DS (1990) Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc R Soc Lond B 241: 220–228

    Article  CAS  Google Scholar 

  • Magleby KL, Song L (1992) Dependency plots suggest the kinetic structure of ion channels. Proc R Soc Lond B 249: 133–142

    Article  CAS  Google Scholar 

  • Mano I, Teichberg VI (1998) A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport 9: 327–331

    Article  PubMed  CAS  Google Scholar 

  • McManus OB, Weiss DS, Spivak CE, Blatz AL, Magleby KL (1988) Fractal models are inadequate for the kinetics of four different ion channels. Biophys J 54: 859–870

    Article  PubMed  CAS  Google Scholar 

  • McManus OB, Magleby KL (1989) Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel. J Gen Physiol 94: 1037–1070

    Article  PubMed  CAS  Google Scholar 

  • Medina I, Filippova N, Bakhramov A, Bregestovski P (1996) Calcium-induced inactivation of NMDA receptor-channels evolves independently of run-down in cultured rat brain neurones. J Physiol Lond. 495: 411–427

    PubMed  CAS  Google Scholar 

  • Medina I, Filippova N, Charton G, Rougeole S, Ben-Ari Y, Khrestchatisky M, Bregestovski P (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J Physiol 482: 567–573

    PubMed  CAS  Google Scholar 

  • Momiyama A, Feldmeyer D, Cull-Candy SG (1996) Identification of a native low-conductance NMDA-channel with reduced sensitivity to Mgt+ in rat central neurones. J Physiol 494: 479–492

    PubMed  CAS  Google Scholar 

  • Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6: 799810

    Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties for four NMDA receptors. Neuron 12: 529–540

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Sakmann B (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266: 1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–463

    Article  PubMed  CAS  Google Scholar 

  • Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH (1993) Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem 268: 11348–11355

    PubMed  CAS  Google Scholar 

  • Oh BH, Kang CH, De-Bondt H, Kim SH, Nikaido K, Joshi AK, Ames GF (1994) The bacterial periplasmic histidine-binding protein. structure/function analysis of the ligand-binding site and comparison with related proteins. J Biol Chem 269: 4135–4143

    PubMed  CAS  Google Scholar 

  • Ozawa S, Iino M, Tsuzuki K (1991) Two types of kainate response in cultured rat hippocampal neurons. J Neurophysiol 66: 2–11

    PubMed  CAS  Google Scholar 

  • Palecek J, Abdrachmanova G, Vyklicky L (1998) Glutamate receptor development and single channel properties in rat spinal cord motoneurones. J Physiol 511P: 35S

    Google Scholar 

  • Activation of Single AMPA- and NMDA-Type Glutamate-Receptor Channels 217

    Google Scholar 

  • Premkumar LS, Auerbach A (1997) Stoichiometry of recombinant N-methyl-Daspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 110: 485–502

    Article  PubMed  CAS  Google Scholar 

  • Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9: 173–186

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ML, Karpen JW (1997) Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature 389: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Ascher P (1997) Coupling of permeation and gating in an NMDAchannel pore mutant. Neuron 18: 167–177

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Sine SM, Ohno K, Bouzat C, Auerbach A, Milone M, Pruitt JN, Engel AG (1995) Mutation of the acetylcholine receptor a subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron 15: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Sivilotti LG, McNeil DK, Lewis, TM, Nassar M, Schoepfer R, Colquhoun D (1997) Recombinant neuronal nicotinic receptors, expressed in Xenopus oocytes, do not resemble native receptors of the rat superior cervical ganglion J Physiol 500: 123–138

    PubMed  CAS  Google Scholar 

  • Soloviev MM, Barnard EA (1997) Xenopus oocytes express a unitary glutamate receptor endogenously. J Molec Biol 273: 14–18

    Google Scholar 

  • Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop; A cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    Google Scholar 

  • Stern P, Béhé P, Schoepfer R, Colquhoun D (1992) Single channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc R Soc Lond B 250: 271–277

    Article  CAS  Google Scholar 

  • Stern P, Cik M, Colquhoun D, Stephenson FA (1994) Single channel properties of cloned NMDA receptors in HEK 293 cells: comparison with results from Xenopus oocytes. J Physiol 476: 391–397

    PubMed  CAS  Google Scholar 

  • Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit ( NMDAR-L) in the rodent brain. J Neurosci 15: 6509–6520

    Google Scholar 

  • Sucher NJ, Awobuluyi MN, Choi Y-B, Lipton SA (1996) NMDA receptors: from genes to channels. Trends Pharmacol Sci 17: 348–355

    PubMed  CAS  Google Scholar 

  • Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depends on RNA editing, splice variation, and subunit composition. J Neurosci 17: 58–69

    PubMed  CAS  Google Scholar 

  • Tang CM, Shi QY, Katchman A, Lynch G (1991) Modulation of the time course of fast

    Google Scholar 

  • EPSCs and glutamate channel kinetics by aniracetam. Science 254:288–290 Thomson AM, Walker VE, Flynn DM (1989) Glycine enhances NMDA-receptor medi-ated synaptic potentials in neocortical slices. Nature 338: 422–424

    Google Scholar 

  • Tölle TR, Berthele A, Zieglgansberger W, Seeburg PH, Wisden W (1993) The differential expression of 16 NMDA and Non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 13: 5009–5028

    PubMed  Google Scholar 

  • Trautmann A (1982) Curare can open and block ionic channels associated with cholinergic receptors. Nature 298: 272–275

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10: 1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki K, Mochizuki S, Iino H, Mishina M, Ozawa S (1994) Ion permeation properties of the cloned mouse 62/01 NMDA receptor channel. Molec Brain Res 26: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Vicini S, Wang J-F, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-Daspartate receptors. J Neurophysiol 79: 555–566

    PubMed  CAS  Google Scholar 

  • Wafford KA, Bain CJ, Le Bourdelles B, Whiting PJ, Kemp JA (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. Neuroreport 4: 1347–1349

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Kathoria M, Bain CJ, Marshall G, Le-Bourdelles B, Kemp JA, Whiting PJ (1995) Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47: 374–380

    PubMed  CAS  Google Scholar 

  • Wang L-Y, Orser BA, Brautigan DL, MacDonald JF (1994) Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2 A. Nature 369: 230–232

    Article  PubMed  CAS  Google Scholar 

  • Wang YT, Salter MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369: 233–235

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Developmental Neurosci 3: 1138–1140

    CAS  Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44: 851–859

    PubMed  CAS  Google Scholar 

  • Williams K, Chao J, Kashiwagi K, Masuko T, Igarashi K (1996) Activation of N-MethylD-Aspartate receptors by glycine: Role of an aspartate residue in the M3–M4 loop of the NR1 subunit. Mol Pharmacol 30: 701–708

    Google Scholar 

  • Wu T-Y, Liu C, Chang Y-C (1996) A study of the oligomeric state of the a-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid-preferring glutamate receptors in the synaptic junctions of porcine brain. Biochem J 319: 731–739

    PubMed  CAS  Google Scholar 

  • Wyllie DJA, Béhé P, Nassar M, Schoepfer R, Colquhoun D (1996) Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc R Soc Lond B 263: 1079–1086

    Article  CAS  Google Scholar 

  • Wyllie DJA, Edmonds B, Colquhoun D (1997) Single activations of recombinant NMDA NR1a/NR2A receptors recorded in one-channel patches. J Physiol 501P: 13 P

    Google Scholar 

  • Wyllie DJA, Béhé P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2 A and NR1a/NR2D NMDA receptors. J Physiol 510: 1–18 (Erratum J Physiol 512:939)

    Google Scholar 

  • Wyllie DJA, Traynelis SF, Cull-Candy SG (1993) Evidence for more than one type of non-NMDA in outside-out patches from cerebellar granule cells of the rat. J Physiol 463: 193–226

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Béhé, P., Colquhoun, D., Wyllie, D.J.A. (1999). Activation of Single AMPA- and NMDA-Type Glutamate-Receptor Channels. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics