Skip to main content

Plantibodies: Immunomodulation and Immunotherapeutic Potential

  • Chapter
  • 94 Accesses

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Plants are currently being explored and exploited as an important system for the expression of recombinant proteins from different sources and represent the next wave in the production of bioactive proteins, either to improve plant performance itself or to be used as biofactories of high-value therapeutic products.1 This chapter describes recent trends and achievements in the field of “plantibodies” (plant produced antibodies), a rapidly evolving field since the original description of antibodies produced in plants.2 Antibody engineering has proved to be a powerful means of modifying immunoglobulin genes to be functionally expressed also in biological systems different from lymphoid cells. Among these systems higher plants may well be considered effective hosts for heterologous expression. In fact, the general capability and adaptability of plants to transformation techniques and expression of immunoglobulin genes as well as to antibody processing and assembly (matching quite closely that of native cells) make plants particularly advantageous for many biotechnological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moffat AS. Exploring transgenic plants as a new vaccine source. Science 1995; 268: 658–660.

    PubMed  CAS  Google Scholar 

  2. Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature 1989; 342: 76–78.

    PubMed  CAS  Google Scholar 

  3. Sheng J, Citovsky V. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 1996; 8: 1699–1710.

    PubMed  CAS  Google Scholar 

  4. During K, Hippe S, Kreuzaler F et al. Synthesis of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol Biol 1990; 15: 281–293.

    PubMed  CAS  Google Scholar 

  5. Winter G, Milstein C. Man-made antibodies. Nature 1991; 349: 293–299.

    PubMed  CAS  Google Scholar 

  6. Benvenuto E, Ordàs R, Tavazza R et al. ‘Phytoantibodies’: a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol Biol 1991; 17: 865–874.

    PubMed  CAS  Google Scholar 

  7. Owen M, Gandecha A, Cockburn B et al. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/technology 1992; 10: 790–794.

    PubMed  CAS  Google Scholar 

  8. Ward ES, Gussow D, Griffiths AD et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from E. coli. Nature 1989; 341: 544–546.

    CAS  Google Scholar 

  9. Hamers-Castermann C, Atarhouch T, Muyldermans S et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363: 446–448.

    Google Scholar 

  10. Desmyter A, Transue TR, Ghahroudi MA et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Struct Biology 1996; 3: 803–811.

    CAS  Google Scholar 

  11. Spinelli S, Frenken L, Bourgeois D et al. The crystal structure of a llama heavy chain variable domain. Nature Struct Biology 1996; 3: 752–757.

    CAS  Google Scholar 

  12. Tavladoraki P, Benvenuto E, Trinca et al. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 1993; 36: 6469–472.

    Google Scholar 

  13. Hein MB, Tang Y, McLeod DA et al. Evaluation of immunoglobulins from plant cells. Biotechnol Prog 1991; 7: 455–461.

    PubMed  CAS  Google Scholar 

  14. van Engelen FA, Schouten A, Molthoff JW et al. Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Mol Biol 1994; 26: 1701–1710.

    PubMed  Google Scholar 

  15. De Neve M, De Loose M, Jacobs A et al. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Research 1993; 2: 227–237.

    PubMed  Google Scholar 

  16. Firek S, Draper J, Owen MRL et al. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol 1993; 23: 861.

    PubMed  CAS  Google Scholar 

  17. Fiedler U, Conrad U. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Bio/technology 1995; 13: 1090–1093.

    PubMed  CAS  Google Scholar 

  18. Artsaenko O, Peisker M, zur Nieden U et al. Expression of a single-chain antibody against abscissic acid creates a wilty phenotype in transgenic tobacco. The Plant J 1995; 8745–750.

    Google Scholar 

  19. Ma JK-C, Lehner T, Stabila P et al. Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur J Immunol 1994; 24: 131–138.

    PubMed  CAS  Google Scholar 

  20. Ma JK-C, Hiatt A, Hein M et al. Generation and assembly of secretory antibodies in plants. Science 1995; 268: 716–719.

    PubMed  CAS  Google Scholar 

  21. Bar-Peled M, Bassham DC, Raikel NV. Transport of proteins in eukaryotic cells: more questions ahead. Plant Mol Biol 1996; 32: 223–249.

    PubMed  CAS  Google Scholar 

  22. Chrispeels MJ. Sorting of proteins in the secretory system. Annu Rev Plant Mol Biol 1991; 42: 35–49.

    Google Scholar 

  23. Bednarek SY, Raikel NV. Intracellular trafficking of secretory proteins. Plant Mol Biol 1992; 20: 133–150.

    PubMed  CAS  Google Scholar 

  24. Vitale A, Ceriotti A, Denecke J. The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 1993; 44: 1417–1444.

    CAS  Google Scholar 

  25. Lucas WJ, Wolf S. Plasmodesmata: the intercellular organelles of green plants. Trends Cell Biol 1993; 3: 308–15.

    PubMed  CAS  Google Scholar 

  26. Vitale A, Chrispeels MJ. Sorting of proteins to the vacuoles of plant cells. BioEssays 1992; 14: 151–60.

    Google Scholar 

  27. Okita TW, Rogers JC. Compartmentation of proteins in the endomembrane system of plant cells. Ann Rev Plant Physiol Plant Mol Biol 1996; 47: 327–50.

    CAS  Google Scholar 

  28. Walter P, Lingappa V. Mechanisms of protein translocation across the endoplasmic reticulum. Annu Rev Cell Biol 1986; 2: 499–516.

    PubMed  CAS  Google Scholar 

  29. Prehn S, Wiedmann M, Rapoport TA et al. EMBO J. 1987; 6: 2093–2097.

    PubMed  CAS  Google Scholar 

  30. Miernick JA, Shatters RG. The use of maize endosperm microsomes for analysis of translocation and processing of secretory precursors. Plant Physiol 1992; 99 Suppl: 44.

    Google Scholar 

  31. Sijmons PC, Dekker BMM, Schrammeijer B et al. Production of correctly processed human serum albumin in transgenic plants. Bio/technology 1990; 8: 217–221.

    PubMed  CAS  Google Scholar 

  32. Denecke J, Botterman J, Deblaere R. Protein secretion in plant cells can occur via a default pathway. Plant Cell 1990; 2: 51–59.

    PubMed  CAS  Google Scholar 

  33. Lund P, Lee RY, Dunsmuir P. Bacterial chitinase is modified and secreted in transgenic tobacco. Plant Physiol 1989; 91: 130–135.

    PubMed  CAS  Google Scholar 

  34. Hunt DC, Chrispeels MJ. The signal peptide of a vacuolar protein is necessary and sufficient for the efficient secretion of a cytosolic protein. Plant Physiol 1991; 96: 18–25.

    PubMed  CAS  Google Scholar 

  35. Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and golgi. Annu Rev Biochem 1987; 56: 829–852.

    PubMed  CAS  Google Scholar 

  36. Denecke J, De Rycke R, Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 1992; 11: 2345–2355.

    PubMed  CAS  Google Scholar 

  37. Pelham HRB. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J 1988; 7: 913–918.

    PubMed  CAS  Google Scholar 

  38. Sönnischen B, Füllekrug J, van Nguyen P, et al. Retention and retrieval: both mechanism cooperate to mantain calreticulin in the endoplasmic reticulum. J Cell Sci 1994; 107: 2705–2717.

    Google Scholar 

  39. Bar-Peled M, Conceiçao AS, Frigerio et al. Expression and regulation of a ERD2, a gene encoding the KDEL receptor homolog in plants and other genes encoding proteins involved in ER-Golgi vesicular trafficking. Plant Cell 1995; 7: 667–676.

    PubMed  Google Scholar 

  40. Munro S, Pelham HRB. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48: 899–907.

    PubMed  CAS  Google Scholar 

  41. Herman EM, Tague BW, Hoffman LM et al. Retention of phytohemagglutinin with carboxyterminal tetrapeptide KDEL in the nuclear envelope and the endoplasmic reticulum. Planta 1990; 182: 305–312.

    CAS  Google Scholar 

  42. Okamoto T, Nakayama H, Seta K et al. Posttranslational processing of a carboxyterminal propeptide containing a KDEL sequence of plant vacuolar cysteine endopeptidase (SH-EP). FEBS Lett 1994; 351: 31–34.

    PubMed  CAS  Google Scholar 

  43. d’Enfert C, Gensse M, Gaillardin C. Fission yeast and a plant have functional homologues of the Sari and Secl2 proteins involved in the ER to Golgi traffic in budding yeast. EMBO J 1992; 11: 4205–4211.

    PubMed  Google Scholar 

  44. Bassham DC, Gal S, Conceicao AS et al. An Arabidopsis synthaxin homologue isolated by functional complementation of a yeast pep12 mutant. Proc Natl Acad Sci 1995; 92: 7262–7266.

    PubMed  CAS  Google Scholar 

  45. Bassham DC, Raikel NV. Transport proteins in the plasma membrane and the secretory system. Trends Plant Sci 1996; 1: 1520.

    Google Scholar 

  46. Gal S, Raikel NV. Protein sorting in the endomembrane system of plant cells. Curr Opin Cell Biol 1993; 5636–640.

    Google Scholar 

  47. Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381: 571–580.

    PubMed  CAS  Google Scholar 

  48. Fontes EBP, Shank BB, Wrobel RL et al. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 1991; 3: 483–96.

    PubMed  CAS  Google Scholar 

  49. Walther-Larsen H, Brandt J, Collinge DB et al. A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarities to vertebrate forms resident in the endoplasmic reticulum. Plant Mol Biol 1993; 21: 1097–1108.

    PubMed  CAS  Google Scholar 

  50. Huang L, Franklin AE, Hoffman NE. Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem 1993; 268: 6560–6566.

    PubMed  CAS  Google Scholar 

  51. Chen F, Hayes PM, Mulrooney DM et al. Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 1994; 6: 835–843.

    PubMed  CAS  Google Scholar 

  52. Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol 1996; 32: 191–222.

    PubMed  CAS  Google Scholar 

  53. Denecke J, Goldman MHS, Demolder J et al. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 1991; 3: 1025–35.

    PubMed  CAS  Google Scholar 

  54. Denecke J, Carlsson LE, Vidal S et al. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 1995; 7: 391–406.

    PubMed  CAS  Google Scholar 

  55. D’Amico L, Valsasina B, Daminati MG et al. Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamiycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant J 1992; 2443–55.

    Google Scholar 

  56. Pedrazzini E, Giovinazzo G, Bollini R et al. Binding of BiP to an assembly-defective protein in plant cells. Plant J 1994; 5103–10.

    Google Scholar 

  57. Hammond C, Helenius A. Quality control in the secretory system. Curr Opin Cell Biol 1995; 7: 523–529.

    PubMed  CAS  Google Scholar 

  58. Li X, Wu Y, Zhang D-Z et al. Rice prolamine protein body biogenesis: a Bipmediated process. Science 1993; 262: 1054–1056.

    PubMed  CAS  Google Scholar 

  59. Shimoni Y, Segal G, Zhu X et al. Nucleotide sequence of a wheat cDNA encoding protein disulfide isomerase. Plant Physiol 1995; 107: 281.

    PubMed  CAS  Google Scholar 

  60. Li C-P, Larkins BA. Expression of protein disulfide isomerase is elevated in the endosperm of the maize fluory-2 mutant. Plant Mol Biol 1996; 30: 873–882.

    PubMed  CAS  Google Scholar 

  61. Gething M-J, Sambrook J. Protein folding in the cell. Nature 1992; 355: 33–45.

    PubMed  CAS  Google Scholar 

  62. Staehelin LA, Moore I. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol Plant Mol Biol 1995; 46: 261–288.

    CAS  Google Scholar 

  63. Fiedler K, Simons K. The role of N-glycans in the secretory pathway. Cell 1995; 81: 309–312.

    PubMed  CAS  Google Scholar 

  64. Sturm A, Kuick AV, Vliegenthart JFG et al. Structure, position and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem 1987; 262: 13392–13403.

    PubMed  CAS  Google Scholar 

  65. Nakamura K, Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol 1993; 101: 1–5.

    PubMed  CAS  Google Scholar 

  66. Chaumont F, O’Riordan V, Boutry M. Protein transport into mitochondria is conserved between plant and yeast species. J Biol Chem 1990; 265: 16856–16862.

    PubMed  CAS  Google Scholar 

  67. de Boer AD, Weisbeek PJ. Chloroplast protein topogenesis, import, sorting and assembly. Biochim Biophys Acta 1991; 1071: 221–253.

    Google Scholar 

  68. Hartl F-U, Neupert W. Protein sorting to mitochondria; evolutionary conservations of folding and assembly. Science 1990; 347: 930–938.

    Google Scholar 

  69. von Heijne G, Nishikawa K. Chloroplast transit peptides. The perfect random coil? FEBS Lett 1991; 278: 1–3.

    Google Scholar 

  70. Waegemann K, Soll J. Phosphorylation of the transit sequence of chloroplast precursor protein. J Biol Chem 1996; 271: 6545–6554.

    PubMed  CAS  Google Scholar 

  71. Brink S, Flugge UI, Chaumont F et al. Preproteins of chloroplast envelope inner membrane contain targeting information for receptor-dependent import into fungal mitochondria. J Biol Chem 1994; 2696: 16478–16485.

    Google Scholar 

  72. Huang J, Hack E, Thornburg RW et al. A yeast mitochondrial leader peptide functions in vivo as a dual targeting signal for both chloroplast and mitochondria. Plant Cell 1990; 2: 1249–1260.

    PubMed  CAS  Google Scholar 

  73. Silva Filho M de C, Chaumont F, Leterme S et al. Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles. Plant Mol Biol 1996; 30: 769–780.

    Google Scholar 

  74. Raikel NV. Nuclear targeting in plants. Plant Physiol 1992; 100: 1627–1632.

    Google Scholar 

  75. Deng X-W. Fresh view of light signal transduction in plants. Cell 1994; 76: 423–426.

    PubMed  CAS  Google Scholar 

  76. Carrington IC, Freed DD and Leinicke AJ. Bipartite signal sequence mediates nuclear translocation of the plant potyviral Nla protein. Plant Cell 1991; 3: 953–962.

    PubMed  CAS  Google Scholar 

  77. Citovsky V and Zambryski P. Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 1993; 47: 67–197.

    Google Scholar 

  78. Reiss B, Klemm M, Kosak H et al. RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci 1996; 93: 3094–3098.

    PubMed  CAS  Google Scholar 

  79. Hicks GR, Raikel NV. Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci 1995; 92: 734–738.

    PubMed  CAS  Google Scholar 

  80. Hicks GR, Smith HMS, Lobreaux S et al. Nuclear import in permeabilized protoplasts from higher plants has unique features. Plant Cell 1996; 8: 1337–1352.

    PubMed  CAS  Google Scholar 

  81. Gould SJ, Keller GA, Hosken N et al. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 1989; 108: 1657–1664.

    PubMed  CAS  Google Scholar 

  82. Olsen LJ, Ettinger WF, Damsz B et al. Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. FEBS Lett 1993; 5: 941–952.

    CAS  Google Scholar 

  83. Voss A, Niersbach M, Hain R et al. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol Breeding 1995; 1: 39–50.

    CAS  Google Scholar 

  84. Shin SU, Wright A, Bonagura et al. Genetically engineered antibodies. Tools for the study of diverse properties of the antibody molecule. Immunol Rev 1992; 130: 87–107.

    PubMed  CAS  Google Scholar 

  85. Hiatt A, Ma JM-C. Characteristics and applications of antibodies produced in plants. In: Nester EW, Verma DPS, eds Advances in Molecular Genetics of Plant-Microbe Interactions Kluwer Academic Publishers (NL) 1993: 549–560.

    Google Scholar 

  86. De Wilde C, De Neve M, De Rycke R et al. Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Sci 1996; 114: 233–241.

    Google Scholar 

  87. Carpita N, Sabularse D, Montezinos D et al. Determination of the pore size of cell walls of living plant cells. Science 1979; 205: 1144–1147.

    PubMed  CAS  Google Scholar 

  88. Tepfer M, Taylor IEP. The permeability of plant cell walls as measured by gel filtration chromatography. Science 1981; 213: 761–763.

    PubMed  CAS  Google Scholar 

  89. During K, Porsch P, Fladung M et al. Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 1993; 3: 587–598.

    Google Scholar 

  90. Krebbers E, Herdies L, De Clercq A et al. Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol 1988; 87: 859–866.

    PubMed  CAS  Google Scholar 

  91. Hwarig C, Sinskey AJ, Lodish HF. Oxidized redox state of Glutathione in the endoplasmic reticulum. Science 1992; 257: 1496–1502.

    Google Scholar 

  92. Stieger M, Neuhaus G, Momma T et al. Self assembly of immunoglobulins in the cytoplasm of the alga Acetabularia mediterranea. Plant Sci 1991; 73: 181–190.

    CAS  Google Scholar 

  93. Schouten A, Roosien J, van Engelen FA et al. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 1996; 30: 781–793.

    PubMed  CAS  Google Scholar 

  94. Rosso MN, Schouten A, Roosien J et al. Expression and functional characterization of a single chain Fv antibody directed against secretions involved in plant nematode infection process. Biochem Biophys Res Comm 1996; 220: 255–263.

    PubMed  CAS  Google Scholar 

  95. Bruyns AM, De Jaeger G, De Neve M et al. Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Lett 1996; 386: 5–10.

    PubMed  CAS  Google Scholar 

  96. Fecker L F, Kaufmann A, Commandeur U et al. Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25K protein in Escherichia coli and Nicotiana benthamiana. Plant Mol Biol 1996; 32: 979–986.

    PubMed  CAS  Google Scholar 

  97. Steipe B, Schiller B, Plückthun A et al. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 1994; 240: 188–192.

    PubMed  CAS  Google Scholar 

  98. Knappik A, Plückthun A. Engineered turns of a recombinant antibody improve its in vitro folding. Prot Engineering 1995; 8: 81–89.

    CAS  Google Scholar 

  99. Knappik A, Krebber C, Plückthun A. The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Bio technology 1993; 11: 77–83.

    PubMed  CAS  Google Scholar 

  100. Solar I, Gershoni JM. Linker modification introduces useful molecular instability in a single chain antibody. Prot Engineering 1995; 8: 717–723.

    CAS  Google Scholar 

  101. Pantoliano MW, Bird RE, Johnson S et al. Conformational stability, folding and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in E. coli. Biochemistry 1991; 30: 10117–10125.

    CAS  Google Scholar 

  102. Alfthan K, Takkinen K, Sizmann D et al. Properties of a single-chain antibody containing different linker peptides. Prot Engineering 1995; 8: 725–731.

    CAS  Google Scholar 

  103. Whitlow M, Bell BA, Feng S-L et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Prot Engineering 1993; 6: 989–995.

    CAS  Google Scholar 

  104. Jiang WR, Venugopal K, Gould EA. Intracellular interference of tick-borne flavivirus infection by using a single-chain antibody fragment delived by recombinant Sindbis virus. J Virol 1995; 69: 1044–1049.

    PubMed  CAS  Google Scholar 

  105. Biocca S, Neuberger MS, Cattaneo A. Expression and targeting of intracellular antibodies in mammalian cells. EMBO J 1990; 9: 101–108.

    PubMed  CAS  Google Scholar 

  106. Biocca S, Ruberti F, Tafani M et al. Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Bio Technology 1995; 13: 1110–1115.

    PubMed  CAS  Google Scholar 

  107. Biocca S, Cattaneo A. Intracellular immunization: antibody targeting to subcellular compartments. Trends Cell Biol 1995; 5: 248–252.

    PubMed  CAS  Google Scholar 

  108. Glockshuber R, Schmidt T, Plückthun A. The disulfide bonds in antibody variable domains: effects on stability, folding invitro and functional expression in Escherichia coli. Biochemistry 1992; 31: 1270–1279.

    PubMed  CAS  Google Scholar 

  109. Bent. AF. Plant disease resistance genes: function meets structure. Plant Cell 1996; 8: 1757–1771.

    PubMed  Google Scholar 

  110. Baulcombe DC. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 1996; 81833 - i844.

    Google Scholar 

  111. Tepfer M. Viral genes and transgenic plants. Bio/technology 1993; 11: 1125–1132.

    CAS  Google Scholar 

  112. Hull R, Davies JW. Approaches to nonconventional control of plant virus diseases. Critical Rev Plant Sci 1992; na7–33.

    Google Scholar 

  113. Carrington JC, Kasschau KD, Mahajan SK et al. Cell-to-cell long-distance transport of viruses in plants. Plant Cell 1996; 8: 1669–1681.

    PubMed  CAS  Google Scholar 

  114. Saunal H, Witz J, van Regenmortel MHV. Inhibition of in vitro cotraslational disassembly of tobacco mosaic virus by monoclonal antibodies to the viral coat protein. J Gen Virol 1993; 74. 897–900.

    PubMed  CAS  Google Scholar 

  115. Hull R. The movement of viruses in plants. Annu Rev Phytopathol 1989; 27: 213–240.

    Google Scholar 

  116. Deom CM, Lapidot M, Beachy RN. Plant virus movement proteins. Cell 1992; 69: 221–224.

    PubMed  CAS  Google Scholar 

  117. Argos P. A sequence motif in many polymerases. Nucleic Acid Res 1988; 16: 9909–9916.

    PubMed  CAS  Google Scholar 

  118. Gorbalenya AE, Koonin E. Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acid Res 1989; 17: 8413–8434.

    PubMed  CAS  Google Scholar 

  119. Williamson VM, Hussey RS. Nematode pathogenesis and resistance in plants. Plant Cell 1996; 8: 1735–1745.

    PubMed  CAS  Google Scholar 

  120. Baum TJ, Hiatt A, Parrott WA et al. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol Plant-Microbe Interact 1996; 9: 382–387.

    CAS  Google Scholar 

  121. Knogge W. Fungal infection of plants. Plant Cell 1996; 8: 1711–1722.

    PubMed  CAS  Google Scholar 

  122. Hiatt A. Antibodies produced in plants. Nature 1990; 344; 469–470.

    PubMed  CAS  Google Scholar 

  123. Anand NN, Mandal S, MacKenzie CR et al. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B 0-antigen. J Biol Chem 1991; 266: 21874–21879.

    PubMed  CAS  Google Scholar 

  124. Holliger P, Prospero T, Winter G. Diabodies: small bivalent and bispecific antibody fragment. Proc Natl Acad Sci 1993; 90: 6444–6448.

    PubMed  CAS  Google Scholar 

  125. Pack P, Müller K, Zahan R et al. Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J Mol Biol 1995; 246: 28–34.

    PubMed  CAS  Google Scholar 

  126. Reiter Y, Brinkmann U, Lee B et al. Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nature Biotechnology 1996; 14: 1239–1245.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franconi, R., Tavladoraki, P., Benvenuto, E. (1997). Plantibodies: Immunomodulation and Immunotherapeutic Potential. In: Cattaneo, A., Biocca, S. (eds) Intracellular Antibodies. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07992-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07992-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07994-2

  • Online ISBN: 978-3-662-07992-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics