On the Zeros of Riemann’s Zeta-Function on the Critical Line

  • A. A. Karatsuba


The present paper is a detailed exposition of the author’s report delivered at the International Sympozium in Memory of Hua Loo Keng, Beijing, on August the 6th, 1988.


Critical Line Real Zero Riemann Zeta Function Arbitrary Positive Number Exponential Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.K.Hua, On Tarry ‘s problem, Quart J. Math,Oxford Ser. 9(1938), 315–320.Google Scholar
  2. [2]
    L.K.Hua, On the number of solutions of Tarry ‘s Problem, Acta Sci. Sinica 1(1952), 1–76.Google Scholar
  3. [3]
    L.K.Hua. On Tarry’s problem, Third All-Union Math Congr. (Moscow, 1956 ), Vol. IV. Izdat Akad. Nauk. SSSR, Moscow, 1959,140–143 (Russian).Google Scholar
  4. [4]
    Arhibov, G. I., Karatsuba, A. A, Cubarekov, V. N., Proof of the convergence of singular integral of the Tarry problem, Dbkh AH SSSR,1979, T. 248, No.2, 268–272.Google Scholar
  5. [5]
    Arhibov, G. I., Karatsuba, A. A., Cubarekov, V. N., Trigonometrical integrals, Izv. AH SSSR, Ser. Math, 1979,T.43,No.5,971–1003.Google Scholar
  6. [6]
    Arhibov, G. I., Karatsuba, A. A., Cubarekov, V.N., Multiple Trigonometrical Sums,Tiyd.MIAH,1980,T.151.Google Scholar
  7. [7]
    Arhibov, G. I., Karatsuba, A. A., Cubarekov, V. N., Theory of multiple Trigonometrical Sums, Moscow, `Science“, 1987.Google Scholar
  8. [8]
    Occkokkov, K. I., I. M. Vinogradov ‘s series and integrals and their applications, Tiyd, MIAH, 1989.Google Scholar
  9. [9]
    Osckolkov, K. I., On properties of a class of I. M. Vinogradov’s series, Dbkl. AH SSSR,T.300, 1988, 803–807.Google Scholar
  10. [10]
    Arhibov, G. I., Ockolkov, K. I., On a class of Trigonometrical sum and its applications, Math. sb.,T.134,10,1987,147–157.Google Scholar
  11. [11]
    Ockolkov, K.I., On Spectral uniform convergence, Dokl. AH SSSR,T.288, No.1, 1986, 54–58.Google Scholar
  12. [12]
    Ockolkov, K. I., On continuous function with polynomial spectrum, See `Investigations on the theory of approximations of functions“, BFAH,SSSR, 1987,187–200.Google Scholar
  13. [13]
    Riemann, G. F. B., Selected works, M, OGIZ, 1948.Google Scholar
  14. [14]
    Hardy, G. H., Sur les zeros de la fonction C (s) de Riemann, Conpt. Rend. Acad. Sci., 1914, v. 158, 1012–1014.Google Scholar
  15. [15]
    Landau, E., Über die Hardysche Eutdeckung unendlich vieler Nullstellen der Zeta-function mit reelen Teil 1/2, Math. Ann.,1915,b.76212– 243.Google Scholar
  16. [16]
    Hardy, G. H., Littlewood, J. E., Contributions to the theory of Riemann zata-function and the theory of distribution of primes, Acta Math., 1918, v.41,119–196.Google Scholar
  17. [17]
    Hardy, G. H., Littlewood, J. E., The zeros of Riemann ‘s zeta-function and the critical line, Math. Zs.,1921,v.10,283–317.Google Scholar
  18. [18]
    Selberg, A., On the zeros of Riemann ‘s zeta-function, Ski.. Norske Vid. Akad. Oslo, 1942, V. 10.Google Scholar
  19. [19]
    Levinson, N., More than one third of the zeros of Riemann’s zeta-function are on o=1 /2, Adv. in Math.,1974, v.13, 383–436.Google Scholar
  20. [20]
    Mozer, Ja., On a theorem of Hardy-Littlewood in the theory of Riemann zeta function, Acta Arith,31, 1976,45–51.Google Scholar
  21. [21]
    Mozer, Ja., improved theorems of Hardy-Littlewood on the density of zeros of the function C Acta Math,Univ. Comen. Britislava, 42–43, 1983, 41–50.Google Scholar
  22. [22]
    Karatsuba, A. A., On distance between consecutive zeros of Riemann zeta function lying on the critical line, Dokl. AH SSSR, 272, 6,1983,1312–1314.Google Scholar
  23. [23]
    Karatsuba, A. A., On zeros of Riemann zeta function on an interval of the critical line, Dokl. AH SSSR, 272, 1983, 1312–1314.Google Scholar
  24. [24]
    Ivic, A., Topics in recent zeta-function theory, Publ. Math. d’Orsay, Universite Paris-Sud, Orsay, 1983.Google Scholar
  25. [25]
    Karatsuba, A. A., On zeros of the function C (s) on certain interval of the critical line, Izv. AH SSSR. Ser. Mat. 48, 1984, 569–584.Google Scholar
  26. [26]
    Karatsuba, A. A., On distribution of zeros of C. AH SSSR, Ser. Mat. 48, 1984, 1214–1224.Google Scholar
  27. [27]
    Karatsuba, A. A., On zeros of the function C (s) on the neighbourhood of the critical line, Izv. AH SSSR, Ser. Mat. 49, 1985, 326–333.Google Scholar
  28. [28]
    Ivic, A., On a problem connected with zeros of C (s) on the critical line, MI:. Math. 1987,104 17– 27.Google Scholar
  29. [29]
    Karatsuba. A. A., Riemann zeta function and its zeros, YMH,40, 1985, 19–70.Google Scholar
  30. [30]
    Titchmarsh, E. K., Theory of Riemann zeta function, M.: EL, 1953.Google Scholar
  31. [31]
    Karatsuba,A.A., On real zeros of the function Cit I, YMH,40, 1985,171–172.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. A. Karatsuba

There are no affiliations available

Personalised recommendations