Skip to main content

An Adaptive Smoothing Method for Traffic State Identification from Incomplete Information

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

Abstract

We present a new method to obtain spatio-temporal information from aggregated data of stationary traffic detectors, the “adaptive smoothing method”. In essential, a nonlinear spatio-temporal lowpass filter is applied to the input detector data. This filter exploits the fact that, in congested traffic, perturbations travel upstream at a constant speed, while in free traffic, information propagates downstream. As a result, one obtains velocity, flow, or other traffic variables as smooth functions of space and time. Applications include traffic-state visualization, reconstruction of traffic situations from incomplete information, fast identification of traffic breakdowns (e.g., in incident detection), and experimental verification of traffic models.

We apply the adaptive smoothing method to observed congestion patterns on several German freeways. It manages to make sense out of data where conventional visualization techniques fail. By ignoring up to 65% of the detectors and applying the method to the reduced data set, we show that the results are robust. The method works well if the distances between neighbouring detector cross sections do not exceed 3 km.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helbing, D.: Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73, 1067–1141 (2001).

    Article  Google Scholar 

  2. Chowdhury, D., Santen, L. and Schadschneider, A.: Statistical physics of vehicular traffic and some related systems, Physics Reports 329, 199–329 (2000).

    Article  MathSciNet  Google Scholar 

  3. Helbing, D., Farkas, I. J., Molnar, P. and Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations, in Pedestrian and Evacuation Dynamics, edited by M. Schreckenberg and S. D. Sharma ( Springer, Berlin, 2002 ), pp. 21–58.

    Google Scholar 

  4. Helbing, D., Molnar, P., Farkas, I. and Bolay, K.: Self-organizing pedestrian movement, Environment and Planning B 28, 361–383 (2001).

    Article  Google Scholar 

  5. Helbing, D., Hennecke, A. and Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities, Phys. Rev. Lett. 82, 4360–4363 (1999).

    Article  Google Scholar 

  6. Lee, H. Y., Lee, H. -W. and Kim, D.: Dynamic states of a continuum traffic equation with on-ramp, Phys. Rev. E 59, 5101–5111 (1999).

    Google Scholar 

  7. Treiber, M. and Helbing, D.: Explanation of observed features of self-organization in traffic flow, e-print cond-mat/9901239 (1999).

    Google Scholar 

  8. Cassidy, M. J. and Bertini, R. L.: Some traffic features at freeway bottlenecks, Transpn. Res. B 33, 25–42 (1999).

    Google Scholar 

  9. Daganzo, C. F., Cassidy, M. J. and Bertini, R. L.: Possible explanations of phase transitions in highway traffic, Transpn. Res. A 33, 365–379 (1999).

    Google Scholar 

  10. Hall, F. L. and Agyemang-Duah, K.: Freeway capacity drop and the definition of capacity, Transpn. Res. Rec. 1320, 91–108 (1991).

    Google Scholar 

  11. Kerner, B. S.: Experimental features of self-organization in traffic flow, Phys. Rev. Lett. 81, 3797–3800 (1998).

    Article  MATH  Google Scholar 

  12. Kerner, B. S. and Rehborn, H.: Experimental features and characteristics of traffic jams, Phys. Rev. E 53, R1297 - R1300 (1996).

    Google Scholar 

  13. Kerner, B. S. and Rehborn, H.: Experimental properties of complexity in traffic flow, Phys. Rev. E 53, R4275 - R4278 (1996).

    Google Scholar 

  14. Koshi, M., Iwasaki, M. and Ohkura, I.: Some findings and an overview on vehicular flow characteristics, in Proceedings of the 8th International Symposium on Transportation and Tra f fic Flow Theory, pp. 403–426, V. F. Hurdle, E. Hauer, and G. N. Stewart (Eds.) (University of Toronto, Toronto, Ontario, 1983 ).

    Google Scholar 

  15. Lee, H. Y., Lee, H. -W. and Kim, D.: Phase diagram of congested traffic flow: An empirical study, Phys. Rev. E 62, 4737–4741 (2000).

    Google Scholar 

  16. Neubert, L., Santen, L., Schadschneider, A. and Schreckenberg, M.: Single-vehicle data of highway traffic: A statistical analysis, Phys. Rev. E 60, 6480–6490 (1999).

    Google Scholar 

  17. Treiber, M., Hennecke, A. and Helbing, D.: Congested tra f fic states in empirical observations and microscopic simulations, Phys. Rev. E 62, 1805–1824 (2000).

    Google Scholar 

  18. Helbing, D. and Treiber, M.: Gas-kinetic-based tra f fic model explaining observed hysteretic phase transition, Phys. Rev. Lett. 81, 3042–3045 (1998).

    Article  Google Scholar 

  19. Lee, H. Y., Lee, H. -W. and Kim, D.: Origin of synchronized tra f fic flow on highways and its dynamic phase transitions, Phys. Rev. Lett. 81, 1130–1133 (1998).

    Article  Google Scholar 

  20. Banks, J. H.: An investigation of some characteristics of congested flow, Transpn. Res. Rec. 1678, 128–134 (1999).

    Article  Google Scholar 

  21. Leutzbach, W.: Introduction to the Theory of Tra f fic Flow ( Springer, Berlin, 1988 ).

    Book  Google Scholar 

  22. Treiber, M. and Helbing, D.: Macroscopic simulation of widely scattered synchronized tra f fic states, J. Phys. A: Math. Gen. 32, L17 - L23 (1999).

    Article  Google Scholar 

  23. Sollacher, R., Kerner, B. S., Konhäuser, P., Rehborn, H., Kühne, R., Schrecken-berg, M. and Helbing, D.: SANDY - Nichtlineare Dynamik im Straßenverkehr, in Technische Anwendungen von Erkenntnissen der Nichtlinearen Dynamik (VDI - Technologiezentrum Physikalische Technologien, Düsseldorf, ISBN 3931384–25-X, 1999 ).

    Google Scholar 

  24. Helbing, D. and Treiber, M.: Critical discussion of “sychronized flow”, submitted to Cooperative Transportation Dynamics (2002).

    Google Scholar 

  25. Kerner, B. S. and Klenov, S. L.: A micropscopic model for phase transitions in tra f fic flow, J. Phys. A: Math. Gen. 35, L31 - L43 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  26. Daganzo, C. F.: A behavioral theory of multi-lane traffic flow, Part I: Long homogeneous freeway sections, (ITS Working Paper, UCB-ITS-RR-99–5, revised June 20, 2000 ).

    Google Scholar 

  27. Kerner, B. S.: Theory of breakdown phenomenon at highway bottlenecks, Transpn. Res. Rec. 1710, 136–144 (2000).

    Article  Google Scholar 

  28. Cassidy, M. J. and Mauch, M.: An observed traffic pattern in long freeway queues, Transpn. Res. A 35, 143–156 (2001).

    Google Scholar 

  29. Mika, H. S., Kreer, J. B. and Yuan, L. S.: Dual mode behavior of freeway traffic, Highw. Res. Rec. 279, 1–13 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Treiber, M., Helbing, D. (2003). An Adaptive Smoothing Method for Traffic State Identification from Incomplete Information. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics