Skip to main content

Melting Kinetics of Prolate Spheroidal Crystals

  • Conference paper
Interface and Transport Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

  • 629 Accesses

Abstract

The melting kinetics of a pivalic acid (PVA) dendritic mushy zone was observed for the first time under convection-free conditions. Video data show that PVA dendrites melt into fragments that shrink at accelerating rates to extinction. Individual fragments follow a characteristic time-dependence derived here for the diminishing length scales within a melting mushy zone. The melting kinetics against which the experimental observations are compared is based on the conduction-limited quasi-static process of melting under shape-preserving conditions. Agreement between analytic theory and experiment was found for the melting of a prolate spheroidal crystal fragment with an aspect ratio of C/A = 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glicksman, M.E., Marsh, S.P., “ The Dendrite.” Handbook of Crystal Growth. Ed. D.T.J. Hurle, Elsevier Science Publishers, Amsterdam (1993) 1, 075–1, 122.

    Google Scholar 

  2. Langer, J.S., Muller-Krumbhaar, H.,“ Theory of dendritic growth. I. Elements of a stability analysis.” Acta Metallurgica, Vol. 26 (1978) 1, 681–1, 687.

    Google Scholar 

  3. Langer,J.S., “ Nonequilibrium physics and the origins of complexity in nature.” Princeton Series in Physics. Critical Problems in Physics: Chapter 2, Princeton University Press 1996.

    Google Scholar 

  4. Mullins,W.W., Sekerka S.F., “Morphological stability of a particle growing by diffusion of heat flow.” J. Appl. Phys., Vol. 34 (1961) 323–329.

    Google Scholar 

  5. Glicksman, M.E., Schaefer, R.J., Ayers, J.D., “Dendritic Growth-A Test of Theory.” Metall. Trans. A, Vol. 7A (1976) 1, 747–1, 759.

    Google Scholar 

  6. Glicksman, M.E., “Fundamentals of Dendritic Crystal Growth.” Crystal Growth of Electronic Materials. Chapter 5. Ed. E. Kaldis, Elsevier Science Publishers (1985) 57–69.

    Google Scholar 

  7. Huang, S.C., Glicksman, M.E., “Fundamentals of dendritic solidification-I. Steady-state tip growth.” Acta Metallurgica, Vol. 29 (1981) 701–715.

    Article  Google Scholar 

  8. Trivedi, R., Mason, J.T., “The effects of interface attachment kinetics on solidification interface morphologies.” Metall. Trans. A, Vol. 22A (1991) 235–249.

    Google Scholar 

  9. Lipton, J., Glicksman, M.E., Kurz, W., “Equiaxed Dendrite Growth in Alloys at Small Supercooling.” Metall. Trans. A, Vol. 18A (1987) 341–345.

    Article  Google Scholar 

  10. Glicksman, M.E., Koss, M.B., Bushnell, L.T., Lacombe, J.C., Winsa, E.A., “The Isothermal Dendritic Growth Experiment.” Materials Science Forum, Vol. 215216 (1996) 179–190.

    Article  Google Scholar 

  11. LaCombe, J.C., Koss, M.B., Fradkov, V.E., Glicksman, M.E., “ Three-dimensional dendrite-tip morphology.” Physical Review, E, Vol. 52, No. 3 (1995) 2, 778–2, 786.

    Google Scholar 

  12. LaCombe, J.C., Koss, M.B., Corrigan, D.C., Lupulescu, A., Tennenhouse, L.A., “Implications of the interface shape on steady-state dendritic crystal growth.” Journal of Crystal Growth, Vol. 206 (1999) 331–344.

    Article  Google Scholar 

  13. Lupulescu, A., LaCombe, J.C., Frei, J.E., Glicksman, M.E., Koss, M.B., “USMP-4 Microgravity PVA Dendritic Growth Data -Preliminary Analysis.” Microgravity Symposium: Proceedings TMS Meeting, Nashville, 2000, CD-ROM.

    Google Scholar 

  14. Ivantsov, G.P., “The Temperature Field Around Spherical, Cylindrical, and Needle-Shaped Crystals which Grow in Supercooled Melts.” Dokl. Akad. Nauk. USSR, Vol. 58, No. 4 (1947) 567–569.

    Google Scholar 

  15. Marsh, S.P., Glicksman, M.E., “Overview of geometric effects on coarsening of mushy zones.” Metallurgical and Materials Transactions A, Vol. 27A (1996) 557–567.

    Article  Google Scholar 

  16. Paradies, C.J., Smith, R.N., Glicksman, M.E., “The influence of convection during solidification on fragmentation of the mushy zone of a model alloy.” Metallurgical and Materials Transactions A, Vol. 28A (1997) 875–883.

    Google Scholar 

  17. Fearn, D.R., Loper, D.E., Roberts, P.H., “Structure of the Earth’s inner core.” Nature, Vol. 292 (1981) 232–233.

    Article  Google Scholar 

  18. Loper, D.E., “Structure of the inner core boundary.” Geophys. Astrophys. Fluid Dyn. Vol. 25 (1983) 139–155.

    Article  MATH  Google Scholar 

  19. Wenk, H.R., Takeshita, T., Jeanloz, R., Johnson, G.C., “Development of texture and elastic anisotropy during deformation of hcp metals.” Geophysical Research Letters, Vol. 15 (1988) 76–79.

    Article  Google Scholar 

  20. Cormier, V.F., “Inner core structure inferred from body waveforms.” EOS, Vol. 75 (1994) 67.

    Google Scholar 

  21. Souriau, A., Romanowicz, B., “Anisotropy in inner core attenuation: a new type of data to constrain the nature of the solid core.” Geophysical Research Letters, Vol. 23 (1996) 1–4.

    Article  Google Scholar 

  22. Bergman, M.I., “Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth’s inner core.” Nature, Vol. 389 (1997) 60–63.

    Article  Google Scholar 

  23. Rushmer, T., Minarik, W.G., Taylor, G.J., “Physical Processes of Core Formation.” Origin of the Earth and Moon, Eds. R.M. Canup, K. Righter, The University of Arizona Press, Tucson, (2000) 227–245.

    Google Scholar 

  24. Haack, H., Scott, E.R.D., “Asteroid Core Crystallization by Inward Dendritic Growth.” Journal of Geophysical Research, Vol. 97 (1992) 14, 727–14, 734.

    Google Scholar 

  25. Esbensen, K.H., Buchwald, V.F., “Planet(oid) core crystallization and fractionation-evidence from the Agpalilik mass of the Cape York iron meteorite shower.” Phys. Earth. Planet. Inter., Vol. 29 (1982) 218–232.

    Article  Google Scholar 

  26. Sekerka, R.F., Jeanfils, C.L., Heckel, R.W., “The Moving Boundary Problem.” Lectures on the Theory of Phase Transformations, Ed. H.I. Aaronson, The Metallurgical Society, AIME, New York (1982) 117–169.

    Google Scholar 

  27. Glicksman, M.E., Diffusion in Solids: Field Theory, Solid-state Principles, and Applications. John Wiley and Sons, New York, 2000.

    Google Scholar 

  28. Ham, F.S., “Shape-Preserving solutions of the time-dependent diffusion equation.” Quart. J. Appl. Math., Vol. 17 (1959) 137–145.

    MathSciNet  MATH  Google Scholar 

  29. Morse, P.M., Feshbach, H., Methods of Theoretical Physics, Vol. 2, McGraw-Hill, New York (1953) 1, 284–1, 292.

    Google Scholar 

  30. Eshbach, O.W., Handbook of Engineering Fundamentals, 2nd edition, John Wiley and Sons, New York (1961) 2–60.

    Google Scholar 

  31. McFadden, G.B., Coriell, S.R., “The Effect of Fluid Flow due to the Crystal-Melt Density Change on the Growth of a Parabolic Isothermal Dendrite.” Journal of Crystal Growth, Vol. 74 (1986) 507–512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glicksman, M.E., Lupulescu, A., Koss, M.B. (2003). Melting Kinetics of Prolate Spheroidal Crystals. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics