Advertisement

Stoffwechseländerungen und künstliche Ernährung bei Sepsis und Multiorganversagen

  • W. Behrendt

Zusammenfassung

Die künstliche Ernährung kritisch-kranker Patienten zählt seit Jahren zu den etablierten Therapieverfahren in der Intensivmedizin. Sie erlaubt es, die bei schwerer Katabolie zu beobachtenden hohen Verluste an Nährsubstraten zumindest teilweise auszugleichen und den Patienten bei länger andauerndem Krankheitsverlauf und fehlender eigener Nahrungsaufnahme ein Überleben zu ermöglichen. Diese positive Feststellung darf aber nicht darüber hinwegtäuschen, daß unser Wissen hinsichtlich einer optimierten Nährstoffversorgung septischer Patienten sowie von Patienten mit Multiorganversagen noch große Lücken aufweist und sich eine Fülle wichtiger Fragen derzeit noch nicht befriedigend beantworten lassen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adibi SA (1989) Intravenous use of glutamine in peptide form: clinical application of old and new observations. Metabolism 38: 89–92PubMedCrossRefGoogle Scholar
  2. 2.
    Adolph M, Eckart J, Metges C, Neeser G, Wolfram G (1987) Oxidative Verwertung 13C-markierter mittelkettiger Triglyzeride bei beatmeten Intensivpatienten. In: Creutzfeld W, Schauder P (Hrsg) Mittelkettige Triglyceride in der parenteralen Ernährung. Karger, Basel (Beiträge zur Infusionstherapie und klinischen Ernährung, Bd20, S 126–144 )Google Scholar
  3. 3.
    Allison SP (1980) Effect of insulin on metabolic response to injury. J Parenter Enteral Nutr 4: 175–179CrossRefGoogle Scholar
  4. 4.
    Andus T, Leser HG, Groß V, Schölmerich J (1991) Akutphase-Proteine: Regulation der Synthese durch Entzündungsmediatoren und klinische Bedeutung. Intensivmedizin 28: 210Google Scholar
  5. 5.
    Askanazi J, Carpentier YA, Elwyn DH, Nordenström J, Jeevanadam M, Rosenbaum S, Gump FE, Kinney JM (1980) Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191: 40–46PubMedCrossRefGoogle Scholar
  6. 6.
    Barot LR, Rombeau JL, Feuerer ID, Mullen JL (1982) Caloric requirements in patients with inflammatory bowel disease. Ann Surg 195: 214–218PubMedCrossRefGoogle Scholar
  7. 7.
    Behrendt W (1987) Zur Zuverlässigkeit von Schätzungen des Energieverbrauchs polytraumatisierter und langzeitbeatmeter Patienten. Aktuel Chir 22: 187–191Google Scholar
  8. 8.
    Behrendt W, Bogatz V, Giani G (1990) The influence of posttraumatic calorie and nitrogen supply upon the cumulative nitrogen balance. Infusionstherapie 17: 32–39PubMedGoogle Scholar
  9. 9.
    Behrendt W, Surmann M, Raumanns J, Giani G (1991) How reliable are short-term measurements of oxygen uptake in polytraumatized and longterm ventilated patients? Infusionstherapie 18: 20–24PubMedGoogle Scholar
  10. 10.
    Bergström J, Fürst P, Norée LO, Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36: 693–697PubMedGoogle Scholar
  11. 11.
    Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200: 264–280PubMedCrossRefGoogle Scholar
  12. 12.
    Burema T, Teirlinck CJPM (1988) Accuracy in indirect calorimetry and its metabolic results. In: Kleinberger G, Eckart J (Hrsg) Methodische Fragen zur indirekten Kalorimetrie. Zuckschwerdt, München (Klinische Ernährung, Bd 30, S. 27–41 )Google Scholar
  13. 13.
    Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192: 570–579Google Scholar
  14. 14.
    Dale G, Young G, Latner AL, Goode A, Tweedle D, Johnston IVA (1975) The effect of surgical operation on venous plasma free amino acids. Ann Surg 81: 295–301Google Scholar
  15. 15.
    DeFronzo RA, Jacot E, Jequier E, Maeder J, Felber JP (1980) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral catheterization. Diabetes 30: 1000–1007Google Scholar
  16. 16.
    Deyk K van, Hempel V, Münch F, Kopp M, Graf H, Epple E (1983) Influence of parenteral fat administration on the pulmonary vascular system in man. Intensive Care Med 9: 73–77PubMedCrossRefGoogle Scholar
  17. 17.
    Dickerson RN, Vehe KL, Mullen JL, Feurer ID (1991) Resting energy expenditure in patients with pancreatitis. Crit Care Med 19: 484–490PubMedCrossRefGoogle Scholar
  18. 18.
    Dölp R, Ahnefeld FW, Schmitz E (1978) Klinische Untersuchungen über die Konzentration freier Aminosäuren im Plasma und Urin im Postaggressionsstoffwechsel. I. Mitteilung. Infusionstherapie 5: 241–245Google Scholar
  19. 19.
    Eckart J (1990) Fett in der parenteralen Ernährung. In: Ahnefeld FW, Grünert A, Schmitz JE (Hrsg) Parenterale Ernährungstherapie. Springer, Berlin Heidelberg New York Tokyo, Bd 40, S 25–51Google Scholar
  20. 20.
    Elliott M, Alberti KGMM (1983) The hormonal and metabolic response to surgery and trauma. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, S 247–270Google Scholar
  21. 21.
    Fischer JE (1991) A teleological view of sepsis. Clin Nutr 10: 1–9CrossRefGoogle Scholar
  22. 22.
    Freund H, Atamian S, Holroyde J, Fischer JE (1979) Plasma amino acids as predictor of the severity outcome of sepsis. Ann Surg 190: 571–576PubMedCrossRefGoogle Scholar
  23. 23.
    Fürst P (1985) Kurzkettige Peptide in der parenteralen Ernährung. Infusionstherapie 12: 70–76Google Scholar
  24. 24.
    Fürst P, Albers S, Stehle P (1987) Stress-induced intracellular glutamine depletion. The potential use of glutamine-containing peptides in parenteral nutrition. In: Adibi SA, Fekl W, Fürst P, Oehmke M (eds) Dipeptides as new substrates in nutrition therapy. Karger, Basel (Beiträge zur Infusionstherapie und klinischen Ernährung, Bd 17, S. 117–136 )Google Scholar
  25. 25.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to injury. J Clin Invest 74: 2238–2248PubMedCrossRefGoogle Scholar
  26. 26.
    Giovannini I, Boldrini G, Catagneto, Sganga G, Nanni G, Pittiruti, Castiglioni G (1983) Respiratory quotient and pattern of substrate utilization in human sepsis and trauma. J Parenter Enteral Nutr 7: 226–230CrossRefGoogle Scholar
  27. 27.
    Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL (1985) Xylitol, an energy source for intravenous nutrition after trauma. J Parenter Enteral Nutr 9: 199–209CrossRefGoogle Scholar
  28. 28.
    Georgieff M, Pscheidl E, Götz H, Träger K, Anhäuptl T, Moldawer LL, Blackburn GL (1991) Untersuchungen zum Mechanismus der Reduktion der Proteinkatabolie nach Trauma und bei Sepsis durch Xylit. Anaesthesist 40: 85–91PubMedGoogle Scholar
  29. 29.
    Gotthardis M, Hackl JM (1988) Die Beeinflussung des katabolen Stoffwechsels bei septischen Patienten und Schädel-Hirn-Traumatisierten durch Gabe von Wachstumshormonen. Infusionstherapie 15: 112–117Google Scholar
  30. 30.
    Haider W, Lackner F, Tonczar L (1975) Verabreichung hochprozentiger Glucose mit großen Insulindosen im Rahmen einer frühzeitigen totalen parenteralen Ernährung bei Patienten mit schockbedingtem übersteigerten Kalorienbedarf. Anaesthesist 24: 289298Google Scholar
  31. 31.
    Hansen BA, Almdal TP, Vilstrup (1989) Effects of xylitol versus glucose on urea synthesis and alanine metabolism in rats. Clin Nutr 8: 109–112Google Scholar
  32. 32.
    Harris JA, Benedict IG (1919) A biometric study of basal metabolism in man. Publication No 279, Carnegie Institution of Washington, p 227Google Scholar
  33. 33.
    Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE (1988) Current concept of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 123: 992–999PubMedCrossRefGoogle Scholar
  34. 34.
    Hinton P, Allison SP, Littlejohn SA, Lloyd J (1971) Insulin and glucose to reduce catabolic response to injury in burned patients. Lancet I: 767–769Google Scholar
  35. 35.
    Hwang TL, Huang SL, Chen MF (1990) Effects of intravenous fat emulsion on respiratory failure. Chest 97: 934–938PubMedCrossRefGoogle Scholar
  36. 36.
    Jeevanadam M, Grote-Holman E, Chirenji T, Askanazi J, Elwyn DH, Kinney JM (1990) Effects of glucose on fuel utilization and glycerol turnover in normal and injured man. Crit Care Med 18: 125–135CrossRefGoogle Scholar
  37. 37.
    Kierdorf H, Maurin N, Heintz B, Kindler J, Sieberth HG (1990) Eiweißkatabolie bei schwerkranken internistischen Intensivpflegepatienten. Stickstoffausscheidung und -bilanz als reproduzierbare und therapeutisch nutzbare Methode. Intensivmedizin 27: 193–200Google Scholar
  38. 38.
    Klein S, Peters EJ, Shangraw RE, Wolfe RR (1991) Lipolytic response to metabolic stress in critically ill patients. Crit Care Med 19: 776–779PubMedCrossRefGoogle Scholar
  39. 39.
    Kreymann G, Grosser S, Buggisch P, Gottschall C, Schwarzenberg H, Costard-Jäckle A, Greten H (1992) Klinische Wertigkeit der indirekten Kalorimetrie in der internistischen Intensivmedizin - Teil 3: Sauerstoffaufnahme und Energieumsatz bei Infektion und Sepsis. Intensivmedizin 29: 42–50Google Scholar
  40. 40.
    Lanschot JJB van, Feenstra BWA, Vermeij CB, Bruining HA (1986) Calculations versus measurements of total energy expenditure. Crit Care Med 14: 981–985PubMedCrossRefGoogle Scholar
  41. 41.
    Long CL (1977) Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 30: 1301–1310PubMedGoogle Scholar
  42. 42.
    Long CL, Kinney JM, Geiger JW (1976) Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism 25: 193–201PubMedCrossRefGoogle Scholar
  43. 43.
    Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy balance and protein needs from indirect calorimetry and nitrogen balance. J Parenter Enteral Nutr 3: 452–456Google Scholar
  44. 44.
    Müller JM, Keller HW, Brenner U, Walter M (1986) Fett und Immunkompetenz. In: Eckart J (Hrsg) Parenterale Ernährung unter besonderer Berücksichtigung der Fettzufuhr. Karger, Basel (Beiträge zur Infusionstherapie und klinischen Ernährung, Bd 13, S 128–141 )Google Scholar
  45. 45.
    Newsholme EA, Crabtree B, Ardawi MSM (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 70: 473–489PubMedGoogle Scholar
  46. 46.
    Newsholme EA, Newsholme P, Curi R, Challoner E, Ardawi MSM (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4: 261–268Google Scholar
  47. 47.
    Nordenström J, Carpentier YA, Askanazi J, Robin AP, Elwyn DH, Hensle TW, Kinney JM (1982) Metabolic utilization of intravenous fat emulsions during total parenteral nutrition. Ann Surg 196: 221–231PubMedCrossRefGoogle Scholar
  48. 48.
    Palmblad J (1991) Intravenous lipid emulsions and host defense — a critical review. Clin Nutr 10: 303–308PubMedCrossRefGoogle Scholar
  49. 49.
    Radermacher P, Santak B, Strobach H, Schrör K, Tarnow J (1992) Fat emulsions containing medium chain triglycerides in patients with sepsis syndrome: effects on pulmonary hemodynamics and gas exchange. Intensive Care Med 18: 231–234PubMedCrossRefGoogle Scholar
  50. 50.
    Radrizzani D, Iapichino G, Cambisano M, Bonetti G, Ronzoni G, Colombo A (1988) Peripheral, visceral and body nitrogen balance of catabolic patients, without and with parenteral nutrition. Intensive Care Med 14: 212–216PubMedCrossRefGoogle Scholar
  51. 51.
    Roth E, Funovics J, Mühlbacher F, Schemper M, Mauritz W, Sporn P, Fritsch A (1982) Metabolic disorders in severe abdominal sepsis; glutamine deficiency in skeletal muscle. Clin Nutr 1: 24–42CrossRefGoogle Scholar
  52. 52.
    Roth E, Zöch G, Mauritz W, Karner J, Funovics J, Sporn P, Fritsch A (1986) Metabolic changes of patients with acute necrotizing pancreatitis. Infusionstherapie 13: 172–179Google Scholar
  53. 53.
    Schmitz JE, Lotz P, Ahnefeld FW, Grünert A (1981) Untersuchungen zur Eiweiß-und Energieversorgung von Intensivpatienten. Infusionstherapie 8: 158–162Google Scholar
  54. 54.
    Schneeweiß B, Graninger W, Stockenhuber F, Druml W, Ferenci P, Eichinger S, Grimm G, Laggner A, Lenz K (1990) Energy metabolism in acute and chronic renal failure. Am J Clin Nutr 52: 596–601PubMedGoogle Scholar
  55. 55.
    Shangraw RE, Jahoor F, Miyoshi H, Neff WA, Stuart CA, Herndon DN, Wolfe RR (1989) Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw JH, Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205: 368–376Google Scholar
  57. 57.
    Skeie B, Askanazi J, Rothkopf MM, Rosenbaum SH, Kvetan V, Thomashow B (1988) Intravenous fat emulsions and lung function: a review. Crit Care Med 16: 183–194PubMedCrossRefGoogle Scholar
  58. 58.
    Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. J Parenter Enteral Nutr 9: 608–617CrossRefGoogle Scholar
  59. 59.
    Stehle P (1988) Bedarfsgerechte Bereitstellung von kurzkettigen Peptiden — eine Voraussetzung für deren Einsatz in der künstlichen Ernährung. Infusionstherapie 15: 26–32Google Scholar
  60. 60.
    Stehle P, Zander J, Mertes N, Albers S, Puchstein Ch, Lawin P, Fürst P (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1: 231–233PubMedCrossRefGoogle Scholar
  61. 61.
    Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract (1985) J Parenter Enteral Nutr 9: 608–617CrossRefGoogle Scholar
  62. 62.
    Streat SJ, Beddoe AH, Hill G (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27: 262–266PubMedCrossRefGoogle Scholar
  63. 63.
    Swinamer DL, Phang PT, Jones RL, Grace M, King GE (1987) Twentyfour hour energy expenditure in critically ill patients. Crit Care Med 15: 637–643PubMedCrossRefGoogle Scholar
  64. 64.
    Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31: 957–963PubMedGoogle Scholar
  65. 65.
    Tracey KJ (1992) TNF and other cytokines in the metabolism of septic shock and cachexia. Clin Nutr 11: 1–11PubMedCrossRefGoogle Scholar
  66. 66.
    Ukikusa M, Ozawa K, Shimahara Y, Asano M, Nakatani T, Tobe T (1982) Changes in blood ketone body ratio. Their significance after major hepatic resection. Ann Surg 116: 781–785Google Scholar
  67. 67.
    Venus B, Smith RA, Patel CB, Sandoval E (1989) Hemodynamic and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278–1281PubMedCrossRefGoogle Scholar
  68. 68.
    Vinnars E, Bergström J, Fürst P (1975) Influence of the postoperative state on the intracellular free amino acids in human muscular tissue. Ann Surg 183: 665–671CrossRefGoogle Scholar
  69. 69.
    Wannemacher RW, Pace JG, Beall FA, Dinterman RE, Petrella VJ, Neufeld HA (1979) Role of the liver in regulation of ketone body production during sepsis. J Clin Invest 64: 1565–1572PubMedCrossRefGoogle Scholar
  70. 70.
    Wernerman J, Vinnars E (1987) The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci 73: 129–133PubMedGoogle Scholar
  71. 71.
    Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. Behrendt

There are no affiliations available

Personalised recommendations